A336132 Number of ways to split a strict integer partition of n into contiguous subsequences all having different sums.
1, 1, 1, 3, 3, 5, 8, 11, 14, 21, 30, 37, 51, 66, 86, 120, 146, 186, 243, 303, 378, 495, 601, 752, 927, 1150, 1395, 1741, 2114, 2571, 3134, 3788, 4541, 5527, 6583, 7917, 9511, 11319, 13448, 16040, 18996, 22455, 26589, 31317, 36844, 43518, 50917, 59655, 69933
Offset: 0
Keywords
Examples
The a(1) = 1 through a(7) = 14 splits: (1) (2) (3) (4) (5) (6) (7) (2,1) (3,1) (3,2) (4,2) (4,3) (2),(1) (3),(1) (4,1) (5,1) (5,2) (3),(2) (3,2,1) (6,1) (4),(1) (4),(2) (4,2,1) (5),(1) (4),(3) (3,2),(1) (5),(2) (3),(2),(1) (6),(1) (4),(2,1) (4,2),(1) (4),(2),(1)
Links
Crossrefs
The version with equal instead of different sums is A318683.
Starting with a composition gives A336127.
Starting with a strict composition gives A336128.
Starting with a partition gives A336131.
Partitions of partitions are A001970.
Partitions of compositions are A075900.
Compositions of compositions are A133494.
Compositions of partitions are A323583.
Programs
-
Mathematica
splits[dom_]:=Append[Join@@Table[Prepend[#,Take[dom,i]]&/@splits[Drop[dom,i]],{i,Length[dom]-1}],{dom}]; Table[Sum[Length[Select[splits[ctn],UnsameQ@@Total/@#&]],{ctn,Select[IntegerPartitions[n],UnsameQ@@#&]}],{n,0,30}]