cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A336149 Lexicographically earliest infinite sequence such that a(i) = a(j) => A278221(i) = A278221(j) and A278222(i) = A278222(j), for all i, j >= 1.

Original entry on oeis.org

1, 2, 3, 2, 4, 5, 6, 2, 7, 8, 9, 5, 10, 11, 12, 2, 13, 14, 15, 8, 16, 17, 18, 5, 19, 20, 21, 11, 22, 23, 24, 2, 25, 26, 27, 14, 28, 29, 30, 8, 31, 32, 33, 17, 34, 35, 36, 5, 37, 38, 39, 20, 40, 41, 42, 11, 43, 44, 45, 23, 46, 47, 48, 2, 49, 50, 51, 26, 52, 53, 54, 14, 55, 56, 34, 29, 57, 58, 59, 8, 60, 61, 62, 32, 63, 64, 65, 17, 66, 67, 68, 35, 69, 70, 71, 5, 72, 27, 73, 38, 74, 75, 76, 20, 77
Offset: 1

Views

Author

Antti Karttunen, Jul 12 2020

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A278221(n), A278222(n)], i.e., of the ordered pair [A046523(A122111(n)), A046523(A005940(1+n))].
For all i, j: A336146(i) = A336146(j) => a(i) = a(j) => A035531(i) = A035531(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A122111(n) = if(1==n,n,prime(bigomega(n))*A122111(A064989(n)));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
    A278221(n) = A046523(A122111(n));
    A278222(n) = A046523(A005940(1+n));
    Aux336149(n) = [A278221(n),A278222(n)];
    v336149 = rgs_transform(vector(up_to, n, Aux336149(n)));
    A336149(n) = v336149[n];

A336148 Lexicographically earliest infinite sequence such that a(i) = a(j) => A278221(i) = A278221(j) and A336158(i) = A336158(j), for all i, j >= 1.

Original entry on oeis.org

1, 2, 3, 2, 4, 5, 6, 2, 7, 8, 9, 5, 10, 11, 12, 2, 13, 14, 15, 8, 16, 17, 18, 5, 19, 20, 21, 11, 22, 23, 24, 2, 25, 26, 27, 14, 28, 29, 30, 8, 31, 32, 33, 17, 34, 35, 36, 5, 37, 38, 39, 20, 40, 41, 25, 11, 42, 43, 44, 23, 45, 46, 47, 2, 48, 49, 50, 26, 51, 32, 52, 14, 53, 54, 34, 29, 55, 56, 57, 8, 58, 59, 60, 32, 61, 62, 63, 17, 64, 65, 30, 35, 66, 67, 68, 5, 69, 70, 71, 38, 72, 73, 74, 20, 75
Offset: 1

Views

Author

Antti Karttunen, Jul 12 2020

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A278221(n), A336158(n)], i.e., of the ordered pair [A046523(A122111(n)), A046523(A000265(n))].
For all i, j: A324400(i) = A324400(j) => A336146(i) = A336146(j) => a(i) = a(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A122111(n) = if(1==n,n,prime(bigomega(n))*A122111(A064989(n)));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
    A278221(n) = A046523(A122111(n));
    A000265(n) = (n>>valuation(n,2));
    A336158(n) = A046523(A000265(n));
    Aux336148(n) = [A278221(n),A336158(n)];
    v336148 = rgs_transform(vector(up_to, n, Aux336148(n)));
    A336148(n) = v336148[n];

A336147 Lexicographically earliest infinite sequence such that a(i) = a(j) => A020639(i) = A020639(j) and A278221(i) = A278221(j), for all i, j >= 1.

Original entry on oeis.org

1, 2, 3, 2, 4, 5, 6, 2, 3, 7, 8, 5, 9, 10, 11, 2, 12, 5, 13, 7, 14, 15, 16, 5, 4, 17, 3, 10, 18, 19, 20, 2, 21, 22, 23, 5, 24, 25, 26, 7, 27, 28, 29, 15, 11, 30, 31, 5, 6, 7, 32, 17, 33, 5, 34, 10, 35, 36, 37, 19, 38, 39, 14, 2, 40, 41, 42, 22, 43, 28, 44, 5, 45, 46, 11, 25, 47, 48, 49, 7, 3, 50, 51, 28, 52, 53, 54, 15, 55, 19, 56, 30, 57, 58, 59, 5, 60, 10, 21, 7, 61, 62, 63, 17, 64
Offset: 1

Views

Author

Antti Karttunen, Jul 12 2020

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A020639(n), A278221(n)].
For all i, j:
A324400(i) = A324400(j) => A336146(i) = A336146(j) => a(i) = a(j),
a(i) = a(j) => A243055(i) = A243055(j),
a(i) = a(j) => A336150(i) = A336150(j).

Crossrefs

First differs from A322590 at a(70) = 28 instead of 44.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A020639(n) = if(1==n, n, factor(n)[1, 1]);
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A122111(n) = if(1==n,n,prime(bigomega(n))*A122111(A064989(n)));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
    A278221(n) = A046523(A122111(n));
    Aux336147(n) = [A020639(n),A278221(n)];
    v336147 = rgs_transform(vector(up_to, n, Aux336147(n)));
    A336147(n) = v336147[n];

A336126 Lexicographically earliest infinite sequence such that a(i) = a(j) => A000035(i) = A000035(j) and A007814(1+A000265(i)) = A007814(1+A000265(j)), for all i, j >= 1.

Original entry on oeis.org

1, 2, 3, 2, 1, 4, 5, 2, 1, 2, 3, 4, 1, 6, 7, 2, 1, 2, 3, 2, 1, 4, 5, 4, 1, 2, 3, 6, 1, 8, 9, 2, 1, 2, 3, 2, 1, 4, 5, 2, 1, 2, 3, 4, 1, 6, 7, 4, 1, 2, 3, 2, 1, 4, 5, 6, 1, 2, 3, 8, 1, 10, 11, 2, 1, 2, 3, 2, 1, 4, 5, 2, 1, 2, 3, 4, 1, 6, 7, 2, 1, 2, 3, 2, 1, 4, 5, 4, 1, 2, 3, 6, 1, 8, 9, 4, 1, 2, 3, 2, 1, 4, 5, 2, 1
Offset: 1

Views

Author

Antti Karttunen, Jul 13 2020

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A000035(n), A007814(1+A000265(n))], parity and the number of trailing 1-bits in the odd part of n (i.e., the length of the rightmost run of 1-bits in its binary expansion).
For all i, j: A336146(i) = A336146(j) => a(i) = a(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A000265(n) = (n>>valuation(n,2));
    A007814(n) = valuation(n,2);
    Aux336126(n) = [(n%2),A007814(1+A000265(n))];
    v336126 = rgs_transform(vector(up_to, n, Aux336126(n)));
    A336126(n) = v336126[n];

A336474 Lexicographically earliest infinite sequence such that a(i) = a(j) => A278221(i) = A278221(j) and A329697(i) = A329697(j), for all i, j >= 1.

Original entry on oeis.org

1, 2, 3, 2, 4, 5, 6, 2, 7, 8, 9, 5, 10, 11, 12, 2, 13, 14, 15, 8, 16, 17, 18, 5, 19, 20, 21, 11, 22, 23, 24, 2, 25, 26, 27, 14, 28, 29, 30, 8, 31, 32, 33, 17, 34, 35, 36, 5, 37, 12, 38, 20, 39, 40, 25, 11, 41, 42, 43, 23, 44, 45, 46, 2, 47, 48, 49, 26, 50, 32, 51, 14, 52, 53, 34, 29, 54, 55, 56, 8, 57, 58, 59, 32, 60, 61, 62, 17, 63, 64, 65, 35, 66, 67, 68, 5, 69, 70, 71, 12, 72, 73, 74, 20, 75
Offset: 1

Views

Author

Antti Karttunen, Jul 25 2020

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A278221(n), A329697(n)].
For all i, j: A324400(i) = A324400(j) => A336146(i) = A336146(j) => a(i) = a(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A122111(n) = if(1==n,n,my(f=factor(n), es=Vecrev(f[,2]),is=concat(apply(primepi,Vecrev(f[,1])),[0]),pri=0,m=1); for(i=1, #es, pri += es[i]; m *= prime(pri)^(is[i]-is[1+i])); (m));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
    A278221(n) = A046523(A122111(n));
    A329697(n) = if(!bitand(n,n-1),0,1+A329697(n-(n/vecmax(factor(n)[, 1]))));
    Aux336474(n) = [A278221(n), A329697(n)];
    v336474 = rgs_transform(vector(up_to,n,Aux336474(n)));
    A336474(n) = v336474[n];
Showing 1-5 of 5 results.