cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336230 Values z of primitive solutions (x, y, z) to the Diophantine equation x^3 + y^3 + 2*z^3 = 128.

Original entry on oeis.org

1, 4, 9, 25, 49, 81, 121, 169, -224, 225, 289, 361, -383, 441, 504, 529, 625, 729, 841, 961, 1089, 1225, 1369, 1521, 1681, 1849, 2025, 2209, -2219, 2401, 2601, -2687, 2809, 3025, 3249, 3481, -3680, 3721, 3969, 4225, -4283, 4417, 4489, 4761, 5041, 5329, -5459
Offset: 1

Views

Author

XU Pingya, Jul 12 2020

Keywords

Comments

Terms are arranged in order of increasing absolute value (if equal, the negative number comes first).
(5 - 4*n^2)^3 + (5 - 4*(n + 1)^2)^3 + 2*(2*n + 1)^6 = 128. A000290(2*n + 1) are terms of the sequence, i.e., there is an infinity of nontrivial solutions to the equation.

Examples

			1^3 + 5^3 + 2 * 1^3 = 128, 1 is a term.
(-11)^3 + (-31)^3 + 2 * (25)^3 = 128, 25 is a term.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, D5.

Crossrefs

Programs

  • Mathematica
    Clear[t]
    t = {};
    Do[y = (128 - x^3 - 2 z^3)^(1/3) /. (-1)^(1/3) -> -1; If[IntegerQ[y] && GCD[x, y, z] == 1, AppendTo[t, z]], {z, -4761, 4761}, {x, -11550, 11550}]
    u = Union@t;
    v = Table[(-1)^n*Floor[(n + 1)/2], {n, 0, 9523}];
    Select[v, MemberQ[u, #] &]