cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336240 Numbers k such that k = x^2+y^2+z^2 = x^3+y^3+z^3 for some integers x,y,z.

Original entry on oeis.org

0, 1, 2, 3, 6, 27, 29, 354, 729, 2027, 6859, 7778, 19846, 20577, 23277, 35937, 58754, 130979, 132651, 232282, 265602, 332750, 389017, 499853, 885602, 970299, 1492779, 2146689, 2413154, 3764477, 4330747, 5694978, 5929741, 8120601, 8388227, 12068354, 14348907, 17005629, 23522402, 24137569, 31999403, 34328125
Offset: 1

Views

Author

Robert Israel, Jul 13 2020

Keywords

Comments

Contains (2*m^2 + 1)^3 corresponding to x=2*m^2+1, y=-z=2*m^3+m, and m^6/2 - 3*m^2/2 + 3 corresponding to x=-m^2+1, y=-m^3/2+m/2+1, z=m^3/2-m/2+1.
Are there other infinite parametric families of solutions?

Examples

			a(6)=27 is in the sequence because 27 = (-3)^2 + 3^2 + 3^2 = (-3)^3 + 3^3 + 3^3.
a(7)=29 is in the sequence because 29 = (-2)^2 + (-3)^2 + 4^2 = (-2)^3 + (-3)^3 + 4^3.
		

Crossrefs

Cf. A336205.

Programs

  • Maple
    N:= 2*10^5: # for all terms <= N
    R:= NULL:
    for xx from 0 while 3*xx^2 <= N do
      for yy from xx while xx^2 + 2*yy^2 <= N do
        for zz from yy while xx^2 + yy^2 + zz^2 <= N do
          t:= xx^2 + yy^2 + zz^2;
          c:= [xx^3,yy^3,zz^3];
          if member(t, {seq(seq(seq(e1*c[1]+e2*c[2]+e3*c[3],e1=[-1,1]),e2=[-1,1]),e3=[-1,1])}) then R:= R, t;  fi
    od od od:
    sort(convert({R},list));
  • Mathematica
    NN = 2*10^5; (* for all terms <= NN *)
    R = {};
    Module[{x, y, z, t, c}, For[x = 0, 3*x^2 <= NN, x++, For[y = x, x^2 + 2^2 <= NN, y++, For[z = y, x^2 + y^2 + z^2 <= NN, z++, t = x^2 + y^2 + z^2; c = {x^3, y^3, z^3}; If[MemberQ[Flatten@Table[{e1, e2, e3}. c, {e1, {-1, 1}}, {e2, {-1, 1}}, {e3, {-1, 1}}], t], Print[t]; AppendTo[R, t]]]]]];
    R // Union (* Jean-François Alcover, Aug 11 2023, after Robert Israel *)

Extensions

a(27)-a(35) from David A. Corneth, Jul 13 2020
a(36)-a(42) from Andrew R. Booker, Jul 14 2020