A336240 Numbers k such that k = x^2+y^2+z^2 = x^3+y^3+z^3 for some integers x,y,z.
0, 1, 2, 3, 6, 27, 29, 354, 729, 2027, 6859, 7778, 19846, 20577, 23277, 35937, 58754, 130979, 132651, 232282, 265602, 332750, 389017, 499853, 885602, 970299, 1492779, 2146689, 2413154, 3764477, 4330747, 5694978, 5929741, 8120601, 8388227, 12068354, 14348907, 17005629, 23522402, 24137569, 31999403, 34328125
Offset: 1
Keywords
Examples
a(6)=27 is in the sequence because 27 = (-3)^2 + 3^2 + 3^2 = (-3)^3 + 3^3 + 3^3. a(7)=29 is in the sequence because 29 = (-2)^2 + (-3)^2 + 4^2 = (-2)^3 + (-3)^3 + 4^3.
Crossrefs
Cf. A336205.
Programs
-
Maple
N:= 2*10^5: # for all terms <= N R:= NULL: for xx from 0 while 3*xx^2 <= N do for yy from xx while xx^2 + 2*yy^2 <= N do for zz from yy while xx^2 + yy^2 + zz^2 <= N do t:= xx^2 + yy^2 + zz^2; c:= [xx^3,yy^3,zz^3]; if member(t, {seq(seq(seq(e1*c[1]+e2*c[2]+e3*c[3],e1=[-1,1]),e2=[-1,1]),e3=[-1,1])}) then R:= R, t; fi od od od: sort(convert({R},list));
-
Mathematica
NN = 2*10^5; (* for all terms <= NN *) R = {}; Module[{x, y, z, t, c}, For[x = 0, 3*x^2 <= NN, x++, For[y = x, x^2 + 2^2 <= NN, y++, For[z = y, x^2 + y^2 + z^2 <= NN, z++, t = x^2 + y^2 + z^2; c = {x^3, y^3, z^3}; If[MemberQ[Flatten@Table[{e1, e2, e3}. c, {e1, {-1, 1}}, {e2, {-1, 1}}, {e3, {-1, 1}}], t], Print[t]; AppendTo[R, t]]]]]]; R // Union (* Jean-François Alcover, Aug 11 2023, after Robert Israel *)
Extensions
a(27)-a(35) from David A. Corneth, Jul 13 2020
a(36)-a(42) from Andrew R. Booker, Jul 14 2020
Comments