cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336246 Array read by upwards antidiagonals: T(n,k) is the number of ways to place n persons on different seats such that each person number p, 1 <= p <= n, differs from the seat number s(p), 1 <= s(p) <= n+k, k >= 0.

Original entry on oeis.org

0, 1, 1, 2, 3, 2, 9, 11, 7, 3, 44, 53, 32, 13, 4, 265, 309, 181, 71, 21, 5, 1854, 2119, 1214, 465, 134, 31, 6, 14833, 16687, 9403, 3539, 1001, 227, 43, 7, 133496, 148329, 82508, 30637, 8544, 1909, 356, 57, 8, 1334961, 1468457, 808393, 296967, 81901, 18089, 3333, 527, 73, 9
Offset: 1

Views

Author

Gerhard Kirchner, Jul 19 2020

Keywords

Comments

T(n,0) = !n (subfactorial) is the number of derangements or fixed-point-free permutations, see A000166(n) below: n persons are placed on n seats such that no person sits on a seat with the same number. The generalization of a permutation is a variation (n persons and n+k seats such that k seats remain free). In this sense, T(n,k) is the number of fixed-point-free variations. I am rather sure that such variations have been examined, but I cannot find a reference.
Some subsequences T(n,k) with k=const:
T(n,0) = A000166(n); T(n,1) = A000255(n); T(n,2) = A000153(n-1);
T(n,3) = A000261(n-1); T(n,4) = A001909(n-3); T(n,5) = A001910(n-4);
T(n,6) = A176732(n); T(n,7) = A176733(n); T(n,8) = A176734(n);
T(n,9) = A176735(n); T(n,10) = A176736(n).

Examples

			For k=1, the n-tuples of seat numbers are:
- for n=1: 2 => T(1,1) = 1.
- for n=2: 21, 23, 31 => T(2,1) = 3,
     21: person 1 sits on seat 2 and vice versa.
     A counterexample is 13 because person 1 would sit on seat 1.
- for n=3: 214,231,234,241,312,314,341,342,412,431,432 => T(3,1) = 11.
Array begins:
   0   1    2    3    4 ...
   1   3    7   13   21 ...
   2  11   32   71  134 ...
   9  53  181  465 1001 ...
  44 309 1214 3539 8544 ...
  .. ... .... .... ....
		

Crossrefs

Programs

  • Maxima
    block(nr: 0, k: -1,  mmax: 55,
        /*First mmax terms are returned, recurrence used*/
       a: makelist(0, n, 1, mmax),
       while nr
    				
  • Maxima
    block(n: 1, k: 0,  mmax: 55,
        /*First mmax terms are returned, explicit formula used*/
       a: makelist(0, n, 1, mmax),
       for m from 1 thru mmax do (su: 0,
         for r from 0 thru n do su: su+(-1)^r*binomial(n,r)*(n+k-r)!/k!,
         a[m]: su, if n=1 then (n: k+2, k: 0) else (n: n-1, k: k+1)),
      return(a));

Formula

T(n,k) = (n+k-1)*T(n-1,k) + (n-1)*T(n-2,k) for n >= 2, k >= 0 with T(0,k)=1 and T(1,k)=k.
For n=0, there is one empty variation. T(0,k) is used for the recurrence only, not in the table. For n=1, the person can be placed on seat number 2..k+1 (if k > 0).
You also find the recurrence in the formula section of A000166 (k=0) and in the name section of the other sequences listed above (1 <= k <= 10). Some sequences have a different offset.
T(n,k) = Sum_{r=0..n} (-1)^r*binomial(n,r)*(n+k-r)!/k!.
Proofs see link.