A336303 Number of ordered ways of writing the n-th n-gonal pyramidal number as a sum of n nonzero n-gonal pyramidal numbers.
1, 1, 0, 0, 6, 0, 180, 630, 1120, 36288, 441000, 6579870, 59734620, 1252872192, 13668490836, 162131872695, 2971275208720, 52783774330940, 1334562954639156, 16933262255752698, 406499325562503480, 8838644883526856832, 190698441426122689290
Offset: 0
Keywords
Examples
a(4) = 6 because the fourth square pyramidal number is 30 and we have [14, 14, 1, 1], [14, 1, 14, 1], [14, 1, 1, 14], [1, 14, 14, 1], [1, 14, 1, 14] and [1, 1, 14, 14].
Links
- Eric Weisstein's World of Mathematics, Pyramidal Number
- Index to sequences related to pyramidal numbers
Programs
-
Mathematica
Join[{1},Table[SeriesCoefficient[Sum[x^(k (k + 1) (k (n - 2) - n + 5)/6), {k, 1, n}]^n, {x, 0, n (n + 1) (n^2 - 3 n + 5)/6}], {n, 1, 22}]]
Formula
a(n) = [x^p(n,n)] (Sum_{k=1..n} x^p(n,k))^n, where p(n,k) = k * (k + 1) * (k * (n - 2) - n + 5) / 6 is the k-th n-gonal pyramidal number.