A336311 Lexicographically earliest infinite sequence such that a(i) = a(j) => A278222(A336120(i)) = A278222(A336120(j)) and A278222(A336125(i)) = A278222(A336125(j)) for all i, j >= 1.
1, 2, 2, 3, 2, 3, 2, 4, 5, 3, 2, 4, 2, 3, 5, 6, 2, 7, 2, 4, 5, 3, 2, 6, 3, 3, 8, 4, 2, 7, 2, 9, 5, 3, 3, 10, 2, 3, 5, 6, 2, 7, 2, 4, 8, 3, 2, 9, 5, 4, 5, 4, 2, 11, 3, 6, 5, 3, 2, 10, 2, 3, 8, 12, 3, 7, 2, 4, 5, 4, 2, 13, 2, 3, 4, 4, 5, 7, 2, 9, 14, 3, 2, 10, 3, 3, 5, 6, 2, 11, 5, 4, 5, 3, 3, 12, 2, 7, 8, 6, 2, 7, 2, 6, 4
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Programs
-
PARI
\\ Needs also code from A336120, A336124, A336125, etc: up_to = 1024; rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; }; A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ From A005940 A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523 A278222(n) = A046523(A005940(1+n)); Aux336311(n) = [A278222(A336120(n)),A278222(A336125(n))]; v336311 = rgs_transform(vector(up_to,n,Aux336311(n))); A336311(n) = v336311[n];
Comments