A336312 Lexicographically earliest infinite sequence such that a(i) = a(j) => A278222(A336120(i)) = A278222(A336120(j)) for all i, j >= 1.
1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 3, 1, 2, 1, 2, 1, 3, 2, 2, 1, 2, 1, 3, 1, 4, 1, 2, 2, 2, 1, 2, 1, 3, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 4, 2, 3, 1, 2, 1, 2, 1, 2, 1, 4, 2, 3, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 4, 1, 2, 1, 2, 2, 2, 1, 3, 1, 4, 1, 2, 1, 2, 2, 4, 1, 3, 1, 3, 1, 3, 1, 3, 2
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Programs
-
PARI
up_to = 1024; \\ 65537; rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; }; \\ Needs also code from A336124: A253553(n) = if(n<=2,1,my(f=factor(n), k=#f~); if(f[k,2]>1,f[k,2]--,f[k,1] = precprime(f[k,1]-1)); factorback(f)); A336120(n) = if(1==n,0,(3==A336124(n))+(2*A336120(A253553(n)))); A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ From A005940 A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523 A278222(n) = A046523(A005940(1+n)); v336312 = rgs_transform(vector(up_to,n,A278222(A336120(n)))); A336312(n) = v336312[n];
Comments