cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336314 a(n) = A324121(A122111(n)).

Original entry on oeis.org

1, 1, 1, 2, 1, 12, 1, 2, 1, 4, 3, 2, 1, 12, 3, 2, 1, 12, 1, 6, 1, 4, 1, 8, 4, 36, 1, 10, 1, 24, 3, 2, 3, 4, 24, 4, 1, 12, 1, 56, 1, 24, 1, 2, 3, 4, 1, 4, 1, 6, 9, 6, 1, 4, 8, 8, 1, 12, 9, 48, 1, 4, 1, 2, 24, 120, 5, 2, 3, 18, 7, 12, 1, 36, 2, 10, 3, 24, 1, 12, 3, 4, 3, 112
Offset: 1

Views

Author

Antti Karttunen, Jul 19 2020

Keywords

Crossrefs

Cf. A336317 (gives the positions where this coincides with A323173).
Cf. also A335914.

Programs

  • PARI
    A122111(n) = if(1==n,n,my(f=factor(n), es=Vecrev(f[,2]),is=concat(apply(primepi,Vecrev(f[,1])),[0]),pri=0,m=1); for(i=1, #es, pri += es[i]; m *= prime(pri)^(is[i]-is[1+i])); (m));
    A324121(n) = gcd(sigma(n),n*numdiv(n));
    A336314(n) = A324121(A122111(n));
    
  • PARI
    \\ Or as a standalone program:
    A336314(n) = if(1==n,1,my(f=factor(n),es=Vecrev(f[,2]),is=concat(apply(primepi,Vecrev(f[,1])),[0]),pri=0,d=1,s=1,x=1,p,e); for(i=1, #es, pri += es[i]; p = prime(pri); e = 1+is[i]-is[1+i]; d *= e; s *= ((p^e)-1)/(p-1); x *= (p^(e-1))); gcd(s,x*d));

Formula

a(n) = A324121(A122111(n)) = gcd(A323173(n), A122111(n)*A336315(n)).