A336321 a(n) = A122111(A225546(n)).
1, 2, 3, 4, 7, 5, 19, 6, 9, 11, 53, 10, 131, 23, 13, 8, 311, 15, 719, 22, 29, 59, 1619, 14, 49, 137, 21, 46, 3671, 17, 8161, 12, 61, 313, 37, 25, 17863, 727, 139, 26, 38873, 31, 84017, 118, 39, 1621, 180503, 20, 361, 77, 317, 274, 386093, 33, 71, 58, 733, 3673, 821641, 34, 1742537, 8167, 87, 18, 151, 67, 3681131, 626, 1627, 41, 7754077, 35, 16290047
Offset: 1
Keywords
Examples
From _Peter Munn_, Jan 04 2021: (Start) In this set of examples we consider [a(n)] as a function a(.) with an inverse, a^-1(.). First, a table showing mapping of the powers of 2: n a^-1(2^n) = 2^n = a(2^n) = A001146(n-1) A000079(n) A057335(n) 0 (1) 1 1 1 2 2 2 2 4 4 4 3 16 8 6 4 256 16 8 5 65536 32 12 6 4294967296 64 18 ... Next, a table showing mapping of the squarefree numbers, as listed in A019565 (a lexicographic ordering by prime factors): n a^-1(A019565(n)) A019565(n) a(A019565(n)) a^2(A019565(n)) Cf. {A337533} Cf. {A005117} = prime(n) = A033844(n-1) 0 1 1 (1) (1) 1 2 2 2 2 2 3 3 3 3 3 8 6 5 7 4 6 5 7 19 5 12 10 11 53 6 18 15 13 131 7 128 30 17 311 8 5 7 19 719 9 24 14 23 1619 ... As sets, the above columns are A337533, A005117, A008578, {1} U A033844. Similarly, we get bijections between sets A000290\{0} -> {1} U A070003; and {1} U A335740 -> A005408 -> A066207. (End)
Comments