cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336322 a(n) = A225546(A122111(n)).

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 5, 16, 9, 12, 10, 32, 15, 24, 18, 256, 30, 64, 7, 48, 27, 20, 14, 512, 36, 40, 81, 96, 21, 128, 42, 65536, 54, 60, 72, 1024, 35, 120, 45, 768, 70, 192, 105, 80, 162, 28, 210, 131072, 25, 144, 90, 160, 11, 4096, 108, 1536, 135, 56, 22, 2048, 33, 84, 243, 4294967296, 216, 384, 66, 240, 270, 288, 55, 262144, 110, 168, 324, 480, 50
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Jul 17 2020

Keywords

Comments

A225546 and A122111 are both self-inverse permutations of the positive integers based on prime factorizations, and they share further common properties. For instance, they map the prime numbers to powers of 2: A225546 maps the k-th prime to 2^2^(k-1), whereas A122111 maps it to 2^k.
In composing these permutations, this sequence maps the list of prime numbers to the squarefree numbers, as listed in A019565; and the "normal" numbers (A055932), as listed in A057335, to ascending powers of 2.

Crossrefs

A225546 composed with A122111.
Sorted even bisection: A335738.
Sorted odd bisection (excluding 1): A335740.
Sequences used to express relationship between terms of this sequence: A001222, A003961, A253560, A331590, A350066.
Sequences of sequences (S_1, S_2, ... S_j) with the property a(S_i) = S_{i+1}, or essentially so: (A033844, A000040, A019565), (A057335, A000079, A001146), (A000244, A011764), (A001248, A334110), (A253563, A334866).
The inverse permutation, A336321, lists sequences where the property is weaker (between the sets of terms).

Formula

a(A033844(m)) = A000040(m+1). [Offset corrected Peter Munn, Feb 14 2022]
a(A000040(m)) = A019565(m).
a(A057335(m)) = 2^m.
For m >= 1, a(2^m) = A001146(m-1).
a(A253563(m)) = A334866(m).
From Peter Munn, Feb 14 2022: (Start)
a(A253560(n)) = a(n)^2.
For n >= 2, a(A003961(n)) = A331590(a(n), 2^2^(A001222(n)-1)).
a(A350066(n, k)) = A331590(a(n), a(k)).
(End)