A336329 When F is the Fermat point of a triangle ABC, this sequence lists the integer total distances FA + FB + FC corresponding to primitive triangles in A336328.
112, 147, 185, 283, 273, 331, 331, 403, 559, 485, 645, 520, 691, 592, 637, 965, 1047, 1560, 1415, 1688, 1649, 2093, 1895, 2045, 1687, 1843, 2073, 1839, 1768, 1805, 1729, 1729, 2593, 2337, 2792, 2408, 2709, 2696, 2813, 2704, 2960, 3192, 3007, 3681, 3217, 3752, 2855
Offset: 1
Keywords
Examples
For first triple (57, 65, 73), d = 112 is solution of 3*(57^4 + 65^4 + 73^4 + d^4) = (57^2 + 65^2 + 73^2 + d^2)^2, hence, 112 is a term because d = FA + FB + FC = 264/7 + 195/7 + 325/7 = 112.
References
- Martin Gardner, Mathematical Circus, Elegant triangles, First Vintage Books Edition, 1979, p. 65.
Links
- Project Euler, Problem 143 - Investigating the Torricelli point of a triangle.
Crossrefs
Programs
-
PARI
lista(nn) = my(d); for(c=4, nn, for(b=ceil(c/sqrt(3)), c-1, for(a=1+(sqrt(4*c^2-3*b^2)-b)\2, b-1, if(gcd([a, b, c])==1 && issquare(6*(a^2*b^2+b^2*c^2+c^2*a^2)-3*(a^4+b^4+c^4), &d) && issquare((a^2+b^2+c^2+d)/2, &d), print1(d, ", "))))); \\ Jinyuan Wang, Jul 20 2020
Formula
For triangle (a, b, c) whose area is S, and d = FA+FB+FC, then
d = sqrt((1/2)*(a^2+b^2+c^2) + 2*S*sqrt(3)), also,
d = sqrt(((a^2 + b^2 + c^2)/2) + (1/2) * sqrt(6*(a^2*b^2 + b^2*c^2 + c^2*a^2) - 3*(a^4 + b^4 + c^4))), or
3*(a^4 + b^4 + c^4 + d^4) = (a^2 + b^2 + c^2 + d^2)^2.
Extensions
More terms from Jinyuan Wang, Jul 20 2020
Comments