cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336386 a(n) = bigomega(sigma(n)) - bigomega(n), where bigomega (A001222) gives the number of prime factors with multiplicity, and sigma (A000203) gives the sum of divisors.

Original entry on oeis.org

0, 0, 1, -1, 1, 1, 2, -1, -1, 1, 2, 0, 1, 2, 2, -3, 2, -1, 2, 0, 3, 2, 3, 0, -1, 1, 1, 1, 2, 2, 4, -2, 3, 2, 3, -2, 1, 2, 2, 0, 2, 3, 2, 1, 0, 3, 4, -2, 0, -1, 3, 0, 3, 1, 3, 1, 3, 2, 3, 1, 1, 4, 1, -5, 2, 3, 2, 1, 4, 3, 4, -2, 1, 1, 0, 1, 4, 2, 4, -2, -2, 2, 3, 2, 3, 2, 3, 1, 3, 0, 3, 2, 5, 4, 3, -1, 2, 0, 1, -2, 2, 3, 3, 0, 4
Offset: 1

Views

Author

Antti Karttunen, Jul 20 2020

Keywords

Crossrefs

Cf. A336356, A336359 (positions of negative terms), A336360 (of nonnegative terms).

Programs

  • PARI
    A336386(n) = (bigomega(sigma(n)) - bigomega(n));

Formula

a(n) = A058063(n) - A001222(n).
Additive with a(p^e) = A001222(A000203(p^e)) - A001222(p^e) = A001222(1 + p + p^2 + ... + p^e) - e.