cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336398 Number of rational knots (or two-bridge knots) with n crossings (chiral pairs counted as distinct).

Original entry on oeis.org

0, 2, 1, 4, 5, 14, 21, 48, 85, 182, 341, 704, 1365, 2774, 5461, 11008, 21845, 43862, 87381, 175104, 349525, 699734, 1398101, 2797568, 5592405, 11187542, 22369621, 44744704, 89478485, 178967894, 357913941, 715849728
Offset: 2

Views

Author

Andrey Zabolotskiy, Jul 20 2020

Keywords

Crossrefs

Programs

  • Python
    [(2**(n-2) + [-1, 2**(n//2), -1, 2**(n//2)+2][n%4])//3 for n in range(2, 30)]

Formula

(2^(n-2) - 1) / 3 if n is even,
(2^(n-2) + 2^((n-1)/2)) / 3 if n = 1 (mod 4),
(2^(n-2) + 2^((n-1)/2) + 2) / 3 if n = 3 (mod 4).
a(n) = a(n-1) + 3*a(n-2) - a(n-3) - 2*a(n-5) - 4*a(n-6).