A018240
Number of rational knots (or two-bridge knots) with n crossings (up to mirroring).
Original entry on oeis.org
1, 1, 2, 3, 7, 12, 24, 45, 91, 176, 352, 693, 1387, 2752, 5504, 10965, 21931, 43776, 87552, 174933, 349867, 699392, 1398784, 2796885, 5593771, 11186176, 22372352, 44741973, 89483947, 178962432, 357924864, 715838805, 1431677611, 2863333376, 5726666752
Offset: 3
Alexander Stoimenow (stoimeno(AT)math.toronto.edu)
The a(7)=7 rational knots with 7 crossings are 7, 52, 43, 322, 313, 2212, 21112. All the rational knots are listed in A122495.
- S. Jablan and R. Sazdanović, LinKnot: Knot Theory by Computer, World Scientific Press, 2007.
- Vincenzo Librandi, Table of n, a(n) for n = 3..1000
- C. Ernst and D. W. Sumners, The Growth of the Number of Prime Knots, Math. Proc. Cambridge Philos. Soc. 102, 303-315, 1987 (see Theorem 5, formulas for TK_n).
- Taizo Kanenobu and Toshio Sumi, Polynomial Invariants of 2-Bridge Knots through 22 Crossings, Math. Comp. 60 (1993), 771-778, S17 (see Table 2).
- P.-V. Koseleff, D. Pecker, Conway polynomials of two-bridge links, arXiv:1011.5992 [math.GT], 2010-2012 (only version 1 contains tables).
- P.-V. Koseleff, D. Pecker, On Alexander-Conway polynomials of two-bridge links, Journal of Symbolic Computation 68 (2015), 215-229.
- A. Stoimenow, Generating functions, Fibonacci numbers and rational knots, Journal of Algebra, 310 (2007), 491-525.
- Index entries for sequences related to knots
- Index entries for linear recurrences with constant coefficients, signature (-1,5,5,-2,-2,-8,-8).
Cf.
A018240 = number of rational knots,
A005418 = number of rational knots and links,
A001045 = Jacobsthal sequence (the difference between the number of rational links and knots),
A090597 = rational links with n crossings,
A329908,
A336398.
-
LinearRecurrence[{-1, 5, 5, -2, -2, -8, -8}, {1, 1, 2, 3, 7, 12, 24}, 50] (* Harvey P. Dale, Sep 03 2013 *)
CoefficientList[Series[(1 - 2 x^2 - x^3 - x^4)/((1 - 2 x) (1 + x) (1 - 2 x^2) (1 + x^2)), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 07 2014 *)
-
Vec((1-2*x^2-x^3-x^4)*x^3/((1-2*x)*(1+x)*(1-2*x^2)*(1+x^2))+O(x^66)) \\ Joerg Arndt, Aug 07 2014
A090597
a(n) = - a(n-1) + 5(a(n-2) + a(n-3)) - 2(a(n-4) + a(n-5)) - 8(a(n-6) + a(n-7)).
Original entry on oeis.org
0, 1, 1, 3, 3, 8, 12, 27, 45, 96, 176, 363, 693, 1408, 2752, 5547, 10965, 22016, 43776, 87723, 174933, 350208, 699392, 1399467, 2796885, 5595136, 11186176, 22375083, 44741973, 89489408
Offset: 3
- Reinhard Zumkeller, Table of n, a(n) for n = 3..1000
- C. Ernst and D. W. Sumners, The Growth of the Number of Prime Knots, Math. Proc. Cambridge Philos. Soc. 102, 303-315, 1987 (see Theorem 5, formulas for TL_n).
- Index entries for linear recurrences with constant coefficients, signature (1,3,-1,0,-2,-4).
Cf.
A200893, and see the third column of the triangle read by rows there.
-
a090597 n = a090597_list !! (n-3)
a090597_list = [0,1,1,3,3,8,12] ++ zipWith (-)
(drop 4 $ zipWith (-) (map (* 5) zs) (drop 2 a090597_list))
(zipWith (+) (drop 2 $ map (* 2) zs) (map (* 8) zs))
where zs = zipWith (+) a090597_list $ tail a090597_list
-- Reinhard Zumkeller, Nov 24 2011
-
f[x_] := (x-x^3-2x^4-3x^5) / (1-x-3x^2+x^3+2x^5+4x^6); CoefficientList[ Series[ f[x], {x, 0, 29}], x] (* Jean-François Alcover, Dec 06 2011 *)
J[n_] := (2^n - (-1)^n)/3; Table[(J[n - 3] + J[(n - If[OddQ[n], 3, 0])/2])/2 , {n, 3, 31}] (* David Scambler, Dec 13 2011 *)
LinearRecurrence[{1,3,-1,0,-2,-4},{0,1,1,3,3,8},30] (* Harvey P. Dale, Nov 12 2013 *)
A329908
Number of oriented rational links with crossing number n.
Original entry on oeis.org
2, 2, 5, 6, 15, 24, 51, 90, 187, 352, 715, 1386, 2795, 5504, 11051, 21930, 43947, 87552, 175275, 349866, 700075, 1398784, 2798251, 5593770, 11188907, 22372352, 44747435, 89483946, 178973355, 357924864, 715860651, 1431677610, 2863377067, 5726666752, 11453377195
Offset: 2
- Yuanan Diao, Michael Finney, and Dawn Ray, The number of oriented rational links with a given deficiency number, arXiv:2007.02819 [math.GT], 2020. See Theorem 3 p.9 and Table 1 p. 14.
- C. Ernst and D. W. Sumners, The Growth of the Number of Prime Knots, Math. Proc. Cambridge Philos. Soc. 102, 303-315, 1987 (see Theorem 1, formulas for TL_n^*).
- Index entries for linear recurrences with constant coefficients, signature (1,3,-1,0,-2,-4).
-
a(n) = if (n%2, if ((n%4)==1, (2^(n-1)+2^((n-1)/2)-2)/3, (2^(n-1)+2^((n-1)/2))/3), (2^(n-1)+1)/3 + 2^(n/2-1));
A352737
Number of oriented two-component rational links (or two-bridge links) with crossing number n (a chiral pair is counted as two distinct ones).
Original entry on oeis.org
2, 0, 4, 2, 10, 10, 30, 42, 102, 170, 374, 682, 1430, 2730, 5590, 10922, 22102, 43690, 87894, 174762, 350550, 699050, 1400150, 2796202, 5596502, 11184810, 22377814, 44739242, 89494870, 178956970, 357946710, 715827882, 1431721302, 2863311530, 5726754134, 11453246122
Offset: 2
If n=2 there are two rational links, namely, the Hopf link pair, one with positive crossings and the other with negative crossings. There are no two-component rational links with crossing number 3.
- Yuanan Diao, Michael Lee Finney, Dawn Ray. The number of oriented rational links with a given deficiency number, Journal of Knot Theory and its Ramifications, Vol 30, Number 9, 2021. 2150065_1-20. See Theorem 4.3 and its proof.
- Paolo Xausa, Table of n, a(n) for n = 2..1000
- Yuanan Diao, Michael Lee Finney, and Dawn Ray, The number of oriented rational links with a given deficiency number, arXiv:2007.02819 [math.GT], 2020.
- Index entries for linear recurrences with constant coefficients, signature (1,4,-2,-4).
-
LinearRecurrence[{1, 4, -2, -4}, {2, 0, 4, 2}, 50] (* Paolo Xausa, May 27 2024 *)
-
a(n) = (2^(n-2) + (-1)^n*2)/3 + ((-1)^n+1)*2^((n-4)/2); \\ Michel Marcus, Mar 31 2022
Showing 1-4 of 4 results.
Comments