cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A018240 Number of rational knots (or two-bridge knots) with n crossings (up to mirroring).

Original entry on oeis.org

1, 1, 2, 3, 7, 12, 24, 45, 91, 176, 352, 693, 1387, 2752, 5504, 10965, 21931, 43776, 87552, 174933, 349867, 699392, 1398784, 2796885, 5593771, 11186176, 22372352, 44741973, 89483947, 178962432, 357924864, 715838805, 1431677611, 2863333376, 5726666752
Offset: 3

Views

Author

Alexander Stoimenow (stoimeno(AT)math.toronto.edu)

Keywords

Examples

			The a(7)=7 rational knots with 7 crossings are 7, 52, 43, 322, 313, 2212, 21112. All the rational knots are listed in A122495.
		

References

  • S. Jablan and R. Sazdanović, LinKnot: Knot Theory by Computer, World Scientific Press, 2007.

Crossrefs

Cf. A018240 = number of rational knots, A005418 = number of rational knots and links, A001045 = Jacobsthal sequence (the difference between the number of rational links and knots), A090597 = rational links with n crossings, A329908, A336398.

Programs

  • Mathematica
    LinearRecurrence[{-1, 5, 5, -2, -2, -8, -8}, {1, 1, 2, 3, 7, 12, 24}, 50] (* Harvey P. Dale, Sep 03 2013 *)
    CoefficientList[Series[(1 - 2 x^2 - x^3 - x^4)/((1 - 2 x) (1 + x) (1 - 2 x^2) (1 + x^2)), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 07 2014 *)
  • PARI
    Vec((1-2*x^2-x^3-x^4)*x^3/((1-2*x)*(1+x)*(1-2*x^2)*(1+x^2))+O(x^66)) \\ Joerg Arndt, Aug 07 2014

Formula

a(n) = - a(n-1) + 5*(a(n-2)+a(n-3)) - 2*(a(n-4)+a(n-5)) - 8*(a(n-6)+a(n-7)). [Originally contributed as a separate sequence entry by Thomas A. Gittings, Dec 11 2003; see Stoimenow, Corollary 5.1 for proof]
G.f.: (1-2*x^2-x^3-x^4)*x^3/((1-2*x)*(1+x)*(1-2*x^2)*(1+x^2)). - R. J. Mathar, Sep 08 2008

Extensions

Edited by Andrey Zabolotskiy, Jun 18 2020

A090597 a(n) = - a(n-1) + 5(a(n-2) + a(n-3)) - 2(a(n-4) + a(n-5)) - 8(a(n-6) + a(n-7)).

Original entry on oeis.org

0, 1, 1, 3, 3, 8, 12, 27, 45, 96, 176, 363, 693, 1408, 2752, 5547, 10965, 22016, 43776, 87723, 174933, 350208, 699392, 1399467, 2796885, 5595136, 11186176, 22375083, 44741973, 89489408
Offset: 3

Views

Author

Thomas A. Gittings, Dec 11 2003

Keywords

Comments

Arises from a conjecture about sequence of rational links with n crossings.
Conjecture derived from: s(n) = k(n) + l(n): definition of sum of rational knots (k) and links (l) s(n) = 6s(n-2) -8s(n-4): see A005418 (Jablan's observation) d(n) = d(n-2) + 2d(n-4): see A001045 (modified Jacobsthal sequence) l(n) = k(n-1) + d(n): conjecture.
a(n) is the number of rational (2-component) links. - Slavik Jablan, Dec 26 2003
Also yields the number of meanders, reduced by symmetry, on an n X 3 rectangle (see A200893). - Jon Wild, Nov 25 2011

Crossrefs

This is the difference between A005418 and A018240.
Cf. A018240 = sequence of rational knots, A005418 = number of rational knots and links, A001045 = Jacobsthal sequence, A329908, A336398.
Cf. A200893, and see the third column of the triangle read by rows there.

Programs

  • Haskell
    a090597 n = a090597_list !! (n-3)
    a090597_list = [0,1,1,3,3,8,12] ++ zipWith (-)
       (drop 4 $ zipWith (-) (map (* 5) zs) (drop 2 a090597_list))
       (zipWith (+) (drop 2 $ map (* 2) zs) (map (* 8) zs))
       where zs = zipWith (+) a090597_list $ tail a090597_list
    -- Reinhard Zumkeller, Nov 24 2011
  • Mathematica
    f[x_] := (x-x^3-2x^4-3x^5) / (1-x-3x^2+x^3+2x^5+4x^6); CoefficientList[ Series[ f[x], {x, 0, 29}], x] (* Jean-François Alcover, Dec 06 2011 *)
    J[n_] := (2^n - (-1)^n)/3; Table[(J[n - 3] + J[(n - If[OddQ[n], 3, 0])/2])/2 , {n, 3, 31}] (* David Scambler, Dec 13 2011 *)
    LinearRecurrence[{1,3,-1,0,-2,-4},{0,1,1,3,3,8},30] (* Harvey P. Dale, Nov 12 2013 *)

Formula

a(n) = +a(n-1) +3*a(n-2) -a(n-3) -2*a(n-5) -4*a(n-6). - R. J. Mathar, Nov 23 2011
G.f.: -x^4*(-1+x^2+3*x^4+2*x^3) / ( (2*x-1)*(1+x)*(2*x^2-1)*(1+x^2) ). - R. J. Mathar, Nov 23 2011
a(n) = (J(n-3) + J((n-3)/2))/2 if n is odd; (J(n-3) + J(n/2))/2 if n is even, where J is the Jacobsthal number A001045. - David Scambler, Dec 12 2011

A329908 Number of oriented rational links with crossing number n.

Original entry on oeis.org

2, 2, 5, 6, 15, 24, 51, 90, 187, 352, 715, 1386, 2795, 5504, 11051, 21930, 43947, 87552, 175275, 349866, 700075, 1398784, 2798251, 5593770, 11188907, 22372352, 44747435, 89483946, 178973355, 357924864, 715860651, 1431677610, 2863377067, 5726666752, 11453377195
Offset: 2

Views

Author

Michel Marcus, Jul 07 2020

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if (n%2, if ((n%4)==1, (2^(n-1)+2^((n-1)/2)-2)/3, (2^(n-1)+2^((n-1)/2))/3), (2^(n-1)+1)/3 + 2^(n/2-1));

Formula

a(n) = (2^(n-1)+1)/3 + 2^(n/2-1) if n is even; (2^(n-1)+2^((n-1)/2)-2)/3 if n is odd and n == 1 mod 4; (2^(n-1)+2^((n-1)/2))/3 if n is odd and n == 3 mod 4.
G.f.: x^2*(2 - 3*x^2 - 3*x^3 - 4*x^4)/(1 - x - 3*x^2 + x^3 + 2*x^5 + 4*x^6). - Jinyuan Wang, Jul 08 2020
From Wesley Ivan Hurt, Jul 17 2025: (Start)
a(n) = (2^(n+1)+2^(n/2)*(3+sqrt(2)+(-1)^n*(3-sqrt(2)))+4*((-1)^n+sin(3*n*Pi/2)))/12.
a(n) = a(n-1) + 3*a(n-2) - a(n-3) - 2*a(n-5) - 4*a(n-6). (End)

A352737 Number of oriented two-component rational links (or two-bridge links) with crossing number n (a chiral pair is counted as two distinct ones).

Original entry on oeis.org

2, 0, 4, 2, 10, 10, 30, 42, 102, 170, 374, 682, 1430, 2730, 5590, 10922, 22102, 43690, 87894, 174762, 350550, 699050, 1400150, 2796202, 5596502, 11184810, 22377814, 44739242, 89494870, 178956970, 357946710, 715827882, 1431721302, 2863311530, 5726754134, 11453246122
Offset: 2

Views

Author

Yuanan Diao, Mar 30 2022

Keywords

Comments

The formula has been proved.

Examples

			If n=2 there are two rational links, namely, the Hopf link pair, one with positive crossings and the other with negative crossings. There are no two-component rational links with crossing number 3.
		

References

  • Yuanan Diao, Michael Lee Finney, Dawn Ray. The number of oriented rational links with a given deficiency number, Journal of Knot Theory and its Ramifications, Vol 30, Number 9, 2021. 2150065_1-20. See Theorem 4.3 and its proof.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1, 4, -2, -4}, {2, 0, 4, 2}, 50] (* Paolo Xausa, May 27 2024 *)
  • PARI
    a(n) = (2^(n-2) + (-1)^n*2)/3 + ((-1)^n+1)*2^((n-4)/2); \\ Michel Marcus, Mar 31 2022

Formula

a(n) = (2^(n-2) + (-1)^n*2)/3 + ((-1)^n+1)*2^((n-4)/2).
G.f.: 2*x^2*(1 - x - 2*x^2 + x^3)/((1 + x)^(1 - 2*x)*(1 - 2*x^2)). - Stefano Spezia, Mar 31 2022
Showing 1-4 of 4 results.