Thomas A. Gittings has authored 5 sequences.
A094029
Number of n-crossing links with alternating braids of 3 strands.
Original entry on oeis.org
1, 1, 4, 5, 13, 18, 38, 57, 115, 183, 354, 604, 1153, 2047, 3904, 7145, 13637, 25471, 48722, 92193
Offset: 4
4 crossing knot (1 component link) can be represented as 3-strand braid AbAb that is alternating (overcrossings and undercrossing alternate).
- K. Murasugi and B. J. Kurpita, A Study of Braids, Kluwer Academic Publishers (1999), pp. 127-166
A094030
Number of n-crossing knots with alternating braids of 3 strands.
Original entry on oeis.org
1, 0, 2, 0, 8, 0, 23, 0, 71, 0, 225, 0, 746, 0, 2555, 0, 8999, 0, 32297, 0
Offset: 4
4 crossing knot (1 component link) can be represented as 3-strand braid AbAb that is alternating (overcrossings and undercrossing alternate).
- K. Murasugi and B. J. Kurpita, A Study of Braids, Kluwer Academic Publishers (1999), pp. 127-166
A094032
Number of n-crossing 3 component links with alternating braids of 3 strands.
Original entry on oeis.org
0, 0, 2, 0, 5, 0, 15, 0, 44, 0, 129, 0, 407, 0, 1349, 0, 4638, 0, 16425, 0
Offset: 4
- K. Murasugi and B. J. Kurpita, A Study of Braids, Kluwer Academic Publishers (1999), pp. 127-166
A094031
Number of n-crossing 2 component links with alternating braids of 3 strands.
Original entry on oeis.org
0, 1, 0, 5, 0, 18, 0, 57, 0, 183, 0, 604, 0, 2047, 0, 7145, 0, 25471, 0, 92193
Offset: 4
- K. Murasugi and B. J. Kurpita, A Study of Braids, Kluwer Academic Publishers (1999), pp. 127-166
A090597
a(n) = - a(n-1) + 5(a(n-2) + a(n-3)) - 2(a(n-4) + a(n-5)) - 8(a(n-6) + a(n-7)).
Original entry on oeis.org
0, 1, 1, 3, 3, 8, 12, 27, 45, 96, 176, 363, 693, 1408, 2752, 5547, 10965, 22016, 43776, 87723, 174933, 350208, 699392, 1399467, 2796885, 5595136, 11186176, 22375083, 44741973, 89489408
Offset: 3
- Reinhard Zumkeller, Table of n, a(n) for n = 3..1000
- C. Ernst and D. W. Sumners, The Growth of the Number of Prime Knots, Math. Proc. Cambridge Philos. Soc. 102, 303-315, 1987 (see Theorem 5, formulas for TL_n).
- Index entries for linear recurrences with constant coefficients, signature (1,3,-1,0,-2,-4).
Cf.
A200893, and see the third column of the triangle read by rows there.
-
a090597 n = a090597_list !! (n-3)
a090597_list = [0,1,1,3,3,8,12] ++ zipWith (-)
(drop 4 $ zipWith (-) (map (* 5) zs) (drop 2 a090597_list))
(zipWith (+) (drop 2 $ map (* 2) zs) (map (* 8) zs))
where zs = zipWith (+) a090597_list $ tail a090597_list
-- Reinhard Zumkeller, Nov 24 2011
-
f[x_] := (x-x^3-2x^4-3x^5) / (1-x-3x^2+x^3+2x^5+4x^6); CoefficientList[ Series[ f[x], {x, 0, 29}], x] (* Jean-François Alcover, Dec 06 2011 *)
J[n_] := (2^n - (-1)^n)/3; Table[(J[n - 3] + J[(n - If[OddQ[n], 3, 0])/2])/2 , {n, 3, 31}] (* David Scambler, Dec 13 2011 *)
LinearRecurrence[{1,3,-1,0,-2,-4},{0,1,1,3,3,8},30] (* Harvey P. Dale, Nov 12 2013 *)
Comments