A336399 a(1) = 1, a(n) is the smallest number such that the concatenation a(1)a(2)...a(n) is divisible by lcm(1..n).
1, 0, 2, 0, 0, 0, 360, 0, 1680, 0, 35280, 0, 332640, 0, 0, 0, 8648640, 0, 306306000, 0, 0, 0, 232792560, 0, 0, 0, 26771144400, 0, 481880599200, 0, 41923612130400, 0, 0, 0, 0, 0, 5487335009956800, 0, 0, 0, 245774847024907200, 0, 8105227020364874400, 0, 0, 0, 452140231622516236800, 0, 3984485791173424336800, 0
Offset: 1
Examples
a(7) = 360 as the smallest positive integer k such that the concatenation a(1)a(2)..a(6)k is divisible by lcm(1..7) = 420. - _David A. Corneth_, Jul 21 2020
Links
- Robert Israel, Table of n, a(n) for n = 1..2297
- David A. Corneth, PARI program
Crossrefs
Programs
-
Maple
N:= 1: R:= 1: C:= 1: for n from 2 to 60 do N:= ilcm(N,n); for d from 1 do x:= -C*10^d mod N; if x = 0 then lx:= 1 else lx:= 1+ilog10(x) fi; if lx = d then R:= R,x; C:= C*10^d+x; break elif lx < d then k:= ceil((10^(d-1)-x)/N); x:= x + k*N; if x < 10^d then R:= R,x; C:= C*10^d+x; break fi fi od; od: R; # Robert Israel, Sep 16 2020
-
PARI
a(n) = {if(n==1,return(1));for(n1 = 0, oo, ; k[n]=eval(concat(Str(k[n-1]), n1)); n2=0; for(n3 = 1, n, if(k[n] % n3 == 0, n2+=1; if(n2==n, return(k[n])))))}; k = vector(10000);print1(k[1]=1,", ");for(j=1, 20, print1(a(j+1) - a(j)*10^(length(Str(a(j+1))) - length(Str(a(j)))), ", "))
-
PARI
\\ See Corneth link. David A. Corneth, Jul 21 2020
Extensions
a(27)-a(50) from David A. Corneth, Jul 20 2020