A336407 a(n) is the number of composites < n-th odd composite.
3, 7, 11, 14, 16, 20, 22, 25, 29, 32, 34, 37, 39, 43, 45, 48, 52, 54, 57, 60, 62, 65, 67, 69, 72, 76, 80, 83, 85, 87, 89, 91, 93, 96, 99, 101, 105, 107, 109, 111, 115, 117, 120, 122, 125, 128, 130, 133, 135, 139, 141, 143, 145, 149, 153, 155, 157, 159, 161
Offset: 1
Keywords
Examples
a(2) is the number of the numbers 4, 6, 8, 9, 10, 12, 14, these being the composites that are less than 15, which is the 2nd odd composite.
Programs
-
Mathematica
z = 400; p = Prime[Range[z]]; c = Select[Range[2, z], ! PrimeQ@# &]; (* A002808 *) d = Select[Range[2, z], ! PrimeQ@# && OddQ@# &]; (* A014076 *) f[n_] := Select[c, # < d[[n]] &]; g[n_] := d[[n]] + Select[c, # < d[[n]] &]; q[n_] := Length[Intersection[p, g[n]]]; tq = Table[q[n], {n, 1, 120}] (* A336406 *) tc = Table[Length[f[n]], {n, 1, 120}] (* A336407 *) m = Min[Length[tq], Length[tc]]; Take[tc, m] - Take[tq, m] (* A336408 *)
-
PARI
n=0;forcomposite(x=4,210,if(x%2,print1(n,", "));n++) \\ Hugo Pfoertner, Jul 26 2020
-
Python
from sympy import primepi def A336407(n): if n == 1: return 3 m, k = n, (r:=primepi(n)) + n + (n>>1) while m != k: m, k = k, (r:=primepi(k)) + n + (k>>1) return m-r-2 # Chai Wah Wu, Jul 31 2024