A336412 Number of labeled dihedral groups with a fixed identity.
1, 1, 20, 630, 18144, 3326400, 148262400, 40864824000, 6586804224000, 3041127510220800, 464463110651904000, 538583682060103680000, 99430833611096064000000, 129629398219266097152000000, 73681349947830849621196800000, 64240926985765022013480960000000
Offset: 1
Keywords
Examples
For n=3 the a(3)=20 isoplanar reduced Latin squares based on the dihedral group of order 6, in lexicographical order, are: 1) 2) 3) 4) 5) 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 2 1 4 3 6 5 2 1 4 3 6 5 2 1 4 3 6 5 2 1 4 3 6 5 2 1 5 6 3 4 3 5 1 6 2 4 3 5 6 2 4 1 3 6 1 5 4 2 3 6 5 2 1 4 3 4 1 2 6 5 4 6 2 5 1 3 4 6 5 1 3 2 4 5 2 6 3 1 4 5 6 1 2 3 4 3 6 5 1 2 5 3 6 1 4 2 5 3 2 6 1 4 5 4 6 2 1 3 5 4 1 6 3 2 5 6 2 1 4 3 6 4 5 2 3 1 6 4 1 5 2 3 6 3 5 1 2 4 6 3 2 5 4 1 6 5 4 3 2 1 6) 7) 8) 9) 10) 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 2 1 5 6 3 4 2 1 5 6 3 4 2 1 5 6 3 4 2 1 6 5 4 3 2 1 6 5 4 3 3 4 6 5 2 1 3 6 1 5 4 2 3 6 4 1 2 5 3 4 1 2 6 5 3 4 5 6 1 2 4 3 2 1 6 5 4 5 6 1 2 3 4 5 1 3 6 2 4 3 5 6 2 1 4 3 2 1 6 5 5 6 4 3 1 2 5 4 2 3 6 1 5 4 6 2 1 3 5 6 4 3 1 2 5 6 1 2 3 4 6 5 1 2 4 3 6 3 4 2 1 5 6 3 2 5 4 1 6 5 2 1 3 4 6 5 4 3 2 1 11) 12) 13) 14) 15) 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 2 1 6 5 4 3 2 1 6 5 4 3 2 3 1 5 6 4 2 3 1 6 4 5 2 4 5 1 6 3 3 5 1 6 2 4 3 5 4 1 6 2 3 1 2 6 4 5 3 1 2 5 6 4 3 6 1 5 4 2 4 6 5 1 3 2 4 6 1 3 2 5 4 6 5 1 3 2 4 5 6 1 2 3 4 1 6 2 3 5 5 3 4 2 6 1 5 3 2 6 1 4 5 4 6 2 1 3 5 6 4 3 1 2 5 3 2 6 1 4 6 4 2 3 1 5 6 4 5 2 3 1 6 5 4 3 2 1 6 4 5 2 3 1 6 5 4 3 2 1 16) 17) 18) 19) 20) 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 2 4 6 1 3 5 2 5 4 6 1 3 2 5 6 3 1 4 2 6 4 5 3 1 2 6 5 3 4 1 3 5 1 6 2 4 3 6 1 5 4 2 3 4 1 2 6 5 3 5 1 6 2 4 3 4 1 2 6 5 4 1 5 2 6 3 4 3 2 1 6 5 4 6 5 1 3 2 4 3 2 1 6 5 4 5 6 1 2 3 5 6 4 3 1 2 5 1 6 3 2 4 5 1 4 6 2 3 5 4 6 2 1 3 5 3 2 6 1 4 6 3 2 5 4 1 6 4 5 2 3 1 6 3 2 5 4 1 6 1 5 3 4 2 6 1 4 5 3 2
References
- Denes, J. and Keedwell, A. D. (1991) Latin Squares New Developments in the Theory and Applications. p. 98.
Links
- R. A. Bailey, Quasi-Complete Latin Squares: Construction and Randomization, Journal of the Royal Statistical Society. Series B (Methodological) 46, no. 2 (1984): 330, 323-34.
- A. T. Benjamin, C. Converse, and H. A. Krieger, Note. How do I marry thee? Let me count the ways, Discrete Appl. Math. 59 (1995) 285-292.
- C. K. Nilrat and C. E. Prager, Complete latin squares: terraces for groups, Ars Combinatoria 24 (1988), 17-29.
- Yaghoub Sharifi, Automorphisms of dihedral groups.
- E. G. Thurber, Concerning the maximum number of stable matchings in the stable marriage problem, Discrete Mathematics Volume 248, Issue 1-3, 6 April 2002, 195-219.
Crossrefs
Programs
-
GAP
A336412:=List([1..16], n->Factorial(2*n-1)/Size(AutomorphismGroup(DihedralGroup(2*n)))); # Dan Eilers, Jun 08 2024
Formula
a(1) = a(2) = 1; a(n>2) = (2*n-1)! / A002618(n). - Dan Eilers, Jun 08 2024
Extensions
a(8)-a(16) and edited by Dan Eilers, Jun 08 2024
Comments