A336417 Number of perfect-power divisors of superprimorials A006939.
1, 1, 2, 5, 15, 44, 169, 652, 3106, 15286, 89933, 532476, 3698650, 25749335, 204947216, 1636097441, 14693641859, 132055603656, 1319433514898, 13186485900967, 144978145009105, 1594375302986404, 19128405558986057, 229508085926717076, 2983342885319348522
Offset: 0
Keywords
Examples
The a(0) = 1 through a(4) = 15 divisors: 1 2 12 360 75600 ------------------------- 1 1 1 1 1 4 4 4 8 8 9 9 36 16 25 27 36 100 144 216 225 400 900 3600
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
Crossrefs
A000325 is the uniform version.
A336416 gives the same for factorials instead of superprimorials.
A000217 counts prime power divisors of superprimorials.
A000961 gives prime powers.
A006939 gives superprimorials or Chernoff numbers.
A022915 counts permutations of prime indices of superprimorials.
A091050 counts perfect power divisors.
A181818 gives products of superprimorials.
A294068 counts factorizations using perfect powers.
A317829 counts factorizations of superprimorials.
Programs
-
Mathematica
chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}]; perpouQ[n_]:=Or[n==1,GCD@@FactorInteger[n][[All,2]]>1]; Table[Length[Select[Divisors[chern[n]],perpouQ]],{n,0,5}]
-
PARI
a(n) = {1 + sum(k=2, n, moebius(k)*(1 - prod(i=1, n, 1 + i\k)))} \\ Andrew Howroyd, Aug 30 2020
Formula
a(n) = 1 + Sum_{k=2..n} mu(k)*(1 - Product_{i=1..n} 1 + floor(i/k)). - Andrew Howroyd, Aug 30 2020
Extensions
Terms a(10) and beyond from Andrew Howroyd, Aug 30 2020
Comments