cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336438 a(n) = (n!)^n * [x^n] -log(1 - Sum_{k>=1} x^k / k^n).

Original entry on oeis.org

0, 1, 3, 107, 109720, 5916402624, 25690641168448256, 12501662072725447325457536, 901886074956174349048867091963183104, 12343856662712388173832816538241443833756015132672, 39989244654801819205752864236178211163455535276138236680981184512
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 21 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(n!)^n SeriesCoefficient[-Log[1 - Sum[x^k/k^n, {k, 1, n}]], {x, 0, n}], {n, 0, 10}]
    b[n_, k_] := If[n == 0, 0, ((n - 1)!)^k + (1/n) Sum[(Binomial[n, j] (n - j - 1)!)^k j b[j, k], {j, 1, n - 1}]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 10}]