A336441 a(n) = (n!)^n * [x^n] exp(Sum_{k>=1} x^k / k^n).
1, 1, 3, 71, 30232, 435772624, 357189846148256, 25740403176657987904960, 234446578865185870182814945640448, 363178754511398964104990417951192651478859776, 122088173887703514886799765831338556792096849201928981184512
Offset: 0
Keywords
Programs
-
Mathematica
Table[(n!)^n SeriesCoefficient[Exp[Sum[x^k/k^n, {k, 1, n}]], {x, 0, n}], {n, 0, 10}] b[n_, k_] := If[n == 0, 1, (1/n) Sum[(Binomial[n, j] (n - j - 1)!)^k (n - j) b[j, k], {j, 0, n - 1}]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 10}]
Formula
From Vaclav Kotesovec, Oct 28 2024: (Start)
a(n) ~ (n!)^(n-1).
a(n) ~ (2*Pi)^((n-1)/2) * n^(n^2 - n/2 - 1/2) / exp(n^2 - n - 1/12). (End)