A336445 Integers m such that m/sopf(m) is a prime number where sopf(m) is A008472(m), the sum of the distinct primes dividing m.
4, 9, 25, 30, 49, 70, 84, 105, 121, 169, 231, 234, 260, 286, 289, 361, 456, 529, 532, 627, 646, 805, 841, 897, 961, 1116, 1364, 1369, 1581, 1665, 1681, 1798, 1849, 1924, 2064, 2150, 2209, 2632, 2809, 2967, 3055, 3339, 3481, 3526, 3721, 4489, 4543, 4824, 5025, 5041
Offset: 1
Keywords
Examples
4 is a term since sopf(4)=2 and 4/2 = 2 is a prime. 30 is a term since sopf(30)=10 and 30/10 = 3 is a prime.
Links
- Michel Marcus, Table of n, a(n) for n = 1..1049 (terms up to 10^7)
Crossrefs
Programs
-
PARI
sopf(n)=vecsum(factor(n)[, 1]); \\ A008472 isokp(k) = my(q=k/sopf(k)); (denominator(q)==1) && isprime(q);
Comments