A336447 Squares visited by a chess rook moving on a square-spiral numbered board where the rook moves to an unvisited square containing the smallest prime number.
1, 2, 3, 5, 7, 41, 37, 31, 29, 521, 509, 337, 109, 43, 47, 83, 89, 179, 173, 359, 353, 349, 113, 293, 307, 311, 313, 317, 191, 97, 101, 103, 107, 691, 683, 197, 193, 1429, 1427, 887, 883, 661, 659, 653, 463, 461, 457, 181, 467, 479, 1163, 1171, 331, 673, 677, 1153, 1151, 487, 491, 199
Offset: 1
Examples
The board is numbered with the square spiral: . 17--16--15--14--13 . | | . 18 5---4---3 12 29 | | | | | 19 6 1---2 11 28 | | | | 20 7---8---9--10 27 | | 21--22--23--24--25--26 . a(1) = 1, the starting square for the rook. a(2) = 2. The four unvisited prime numbered squares around a(1) the rook can move to are numbered 2,61,19,23. Of these 2 is the smallest. a(7) = 37. The three unvisited prime numbered squares around a(6) = 41 the rook can move to are numbered 37,43,107. Of those 37 is the smallest. Note that 43 is the closest prime, being only 2 units away while 37 is 4 units away. a(135) = 863. The final square. The three previously visited prime numbered squares around a(135) are numbered 191,859,1709. Note there is no fourth prime as the column of squares directly upward from 863 contains no primes; the values from 871,994,1125,... and beyond fit the quadratic 4n^2+119n+871, which can be factored as (4n+67)*(n+13), and thus contains no primes.
Links
- Scott R. Shannon, Image showing the 134 steps of the rook's path. A green square shows the starting 1 square, a red square shows the final square with number 863, and a thick white line is the path between visited squares. All visited prime numbered squares are shown in yellow, while those unvisited squares containing primes are shown in grey. The three squares which block the rook's movement from the final square are shown with a red border. The square spiral numbering of the board is shown as a thin white line. Click on the image to zoom in to see the prime numbers.
Comments