A336450 Values z of primitive solutions (x, y, z) to the Diophantine equation x^3 + y^3 + 2*z^3 = 2*5^6.
1, -3, 4, 9, 16, 25, 36, 49, -56, 64, 81, 88, -104, 121, 144, -167, 169, 177, 196, -203, -243, -255, 256, 277, 289, 324, 361, -363, 373, -395, -411, 441, 484, 529, 576, 676, 709, -719, 729, 784, 841, 961, 1017, 1024, -1028, 1080, 1089, -1091, 1156, 1296, 1369
Offset: 1
Keywords
Examples
(-20)^3 + 34^3 + 2*(-3)^3 = 31250, -3 is a term. (-11)^3 + 29^3 + 2*16^3 = 15^3 + 27^3 + 2*16^3 = 31250, 16 is a term.
References
- R. K. Guy, Unsolved Problems in Number Theory, D5.
Crossrefs
Programs
-
Mathematica
Clear[t] t = {}; Do[y = (31250 - x^3 - 2z^3)^(1/3) /. (-1)^(1/3) -> -1; If[IntegerQ[y] && GCD[x, y, z] == 1, AppendTo[t, z]], {z, -1369, 1369}, {x, -Round[(Abs[31250 - 2z^3]/3)^(1/2)], Round[(Abs[31250 - 2z^3]/3)^(1/2)]}] u = Union@t; v = Table[(-1)^n*Floor[(n + 1)/2], {n, 0, 2739}]; Select[v, MemberQ[u, #] &]
Comments