cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A336471 Lexicographically earliest infinite sequence such that a(i) = a(j) => A329697(i) = A329697(j) and A336158(i) = A336158(j), for all i, j >= 1.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 3, 1, 4, 2, 3, 2, 3, 3, 5, 1, 2, 4, 6, 2, 7, 3, 6, 2, 4, 3, 8, 3, 6, 5, 6, 1, 7, 2, 7, 4, 6, 6, 7, 2, 3, 7, 9, 3, 10, 6, 9, 2, 11, 4, 5, 3, 6, 8, 7, 3, 12, 6, 9, 5, 6, 6, 13, 1, 7, 7, 9, 2, 12, 7, 9, 4, 6, 6, 10, 6, 12, 7, 9, 2, 14, 3, 6, 7, 5, 9, 12, 3, 6, 10, 12, 6, 12, 9, 12, 2, 3, 11, 13, 4, 6, 5, 6, 3, 15
Offset: 1

Views

Author

Antti Karttunen, Jul 22 2020

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A329697(n), A336158(n)].
For all i, j:
A336470(i) = A336470(j) => a(i) = a(j)
a(i) = a(j) => A336396(i) = A336396(j),
a(i) = a(j) => A336469(i) = A336469(j) => A336477(i) = A336477(j).
This sequence has an ability to see where the terms of A003401 are, as they are the indices of zeros in A336469. Specifically, they are numbers k that satisfy the condition A329697(k) = A001221(A336158(k)), i.e., numbers for which A329697(k) is equal to the number of distinct prime divisors of the odd part of k. See also comments in array A334100.

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A000265(n) = (n>>valuation(n,2));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A336158(n) = A046523(A000265(n));
    A329697(n) = if(!bitand(n,n-1),0,1+A329697(n-(n/vecmax(factor(n)[, 1]))));
    Aux336471(n) = [A329697(n), A336158(n)];
    v336471 = rgs_transform(vector(up_to, n, Aux336471(n)));
    A336471(n) = v336471[n];

A336473 Lexicographically earliest infinite sequence such that a(i) = a(j) => A278222(i) = A278222(j) and A329697(i) = A329697(j), for all i, j >= 1.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 6, 2, 6, 4, 7, 1, 3, 5, 8, 3, 9, 6, 10, 2, 6, 6, 11, 4, 10, 7, 12, 1, 13, 3, 8, 5, 9, 8, 10, 3, 14, 9, 15, 6, 16, 10, 17, 2, 18, 6, 19, 6, 16, 11, 20, 4, 21, 10, 22, 7, 23, 12, 24, 1, 13, 13, 18, 3, 25, 8, 21, 5, 9, 9, 16, 8, 15, 10, 17, 3, 25, 14, 16, 9, 26, 15, 27, 6, 16, 16, 28, 10, 27, 17, 29, 2, 6, 18, 30, 6, 16, 19, 20, 6, 15
Offset: 1

Views

Author

Antti Karttunen, Jul 24 2020

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A278222(n), A329697(n)].
For all i, j: A336460(i) = A336460(j) => a(i) = a(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A278222(n) = A046523(A005940(1+n));
    A329697(n) = if(!bitand(n,n-1),0,1+A329697(n-(n/vecmax(factor(n)[, 1]))));
    Aux336473(n) = [A278222(n), A329697(n)];
    v336473 = rgs_transform(vector(up_to, n, Aux336473(n)));
    A336473(n) = v336473[n];

A336460 Lexicographically earliest infinite sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = [A278222(n), A336158(n), A336466(n)], for all i, j >= 1.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 6, 2, 7, 4, 8, 1, 3, 5, 9, 3, 10, 6, 11, 2, 12, 7, 13, 4, 14, 8, 15, 1, 16, 3, 17, 5, 18, 9, 19, 3, 20, 10, 21, 6, 22, 11, 23, 2, 24, 12, 25, 7, 26, 13, 27, 4, 28, 14, 29, 8, 30, 15, 31, 1, 32, 16, 33, 3, 34, 17, 35, 5, 18, 18, 22, 9, 36, 19, 37, 3, 38, 20, 39, 10, 40, 21, 41, 6, 42, 22, 43, 11, 44, 23, 45, 2, 7, 24, 46, 12, 47, 25, 48, 7, 49
Offset: 1

Views

Author

Antti Karttunen, Jul 24 2020

Keywords

Comments

Restricted growth sequence transform of the ordered triple [A278222(n), A336158(n), A336466(n)].
For all i, j:
A324400(i) = A324400(j) => A003602(i) = A003602(j) => a(i) = a(j),
a(i) = a(j) => A336159(i) = A336159(j),
a(i) = a(j) => A336470(i) = A336470(j) => A336471(i) = A336471(j),
a(i) = a(j) => A336472(i) = A336472(j),
a(i) = a(j) => A336473(i) = A336473(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A000265(n) = (n>>valuation(n,2));
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A278222(n) = A046523(A005940(1+n));
    A336158(n) = A046523(A000265(n));
    A336466(n) = { my(f=factor(n)); prod(k=1,#f~,if(2==f[k,1],1,(A000265(f[k,1]-1))^f[k,2])); };
    Aux336460(n) = [A278222(n), A336158(n), A336466(n)];
    v336460 = rgs_transform(vector(up_to, n, Aux336460(n)));
    A336460(n) = v336460[n];

A336392 Lexicographically earliest infinite sequence such that a(i) = a(j) => A278222(i) = A278222(j) and A336467(i) = A336467(j), for all i, j >= 1.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 6, 2, 7, 4, 8, 1, 9, 5, 10, 3, 11, 6, 12, 2, 13, 7, 14, 4, 15, 8, 16, 1, 3, 9, 6, 5, 17, 10, 18, 3, 19, 11, 20, 6, 21, 12, 22, 2, 23, 13, 24, 7, 25, 14, 26, 4, 27, 15, 28, 8, 29, 16, 30, 1, 31, 3, 32, 9, 33, 6, 34, 5, 35, 17, 36, 10, 21, 18, 37, 3, 11, 19, 38, 11, 39, 20, 40, 6, 41, 21, 42, 12, 43, 22, 44, 2, 45, 23, 46, 13
Offset: 1

Views

Author

Antti Karttunen, Aug 10 2020

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A278222(n), A336467(n)].
For all i, j: A324400(i) = A324400(j) => A003602(i) = A003602(j) => a(i) = a(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A278222(n) = A046523(A005940(1+n));
    A000265(n) = (n>>valuation(n,2));
    A336467(n) = { my(f=factor(n)); prod(k=1,#f~,if(2==f[k,1],1,(A000265(f[k,1]+1))^f[k,2])); };
    Aux336392(n) = [A278222(n), A336467(n)];
    v336392 = rgs_transform(vector(up_to, n, Aux336392(n)));
    A336392(n) = v336392[n];
Showing 1-4 of 4 results.