A336502 Partial sums of A057003.
1, 7, 127, 5167, 365527, 39435607, 6006997207, 1226103906007, 322796982334807, 106460296033918807, 42980408446129381207, 20846482682939051365207, 11959807608801430284133207, 8010447502346968140207973207, 6193994326661240674349352805207, 5476021766725276671842502543205207
Offset: 1
Examples
a(2) = 1 + 2*3 = 7. a(3) = 1 + 2*3 + 4*5*6 = 127. a(4) = 1 + 2*3 + 4*5*6 + 7*8*9*10 = 5167.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..226
Programs
-
Mathematica
Accumulate @ Table[(n * (n + 1)/2)!/((n - 1) * n /2)!, {n, 1, 16}] (* Amiram Eldar, Jul 23 2020 *)
-
PARI
{a(n) = sum(i=1, n, prod(j=(i-1)*i/2+1, i*(i+1)/2, j))}
Formula
a(n) = Sum_{i=1..n} Product_{j=T(i-1)+1..T(i)} j where T(n) is n-th triangular number.
a(n) = A227364(T(n)) where T(n) is n-th triangular number.
a(n) ~ n^(2*n) / 2^n. - Vaclav Kotesovec, Nov 20 2021
Comments