A336516 Sum of parts, counted without multiplicity, in all compositions of n.
0, 1, 3, 10, 24, 59, 136, 309, 682, 1493, 3223, 6904, 14675, 31013, 65202, 136512, 284748, 592082, 1227709, 2539516, 5241640, 10798133, 22206568, 45597489, 93495667, 191464970, 391636718, 800233551, 1633530732, 3331568080, 6789078236, 13824212219, 28129459098
Offset: 0
Keywords
Examples
a(4) = 1 + 1 + 2 + 1 + 2 + 1 + 2 + 2 + 1 + 3 + 3 + 1 + 4 = 24: (1)111, (1)1(2), (1)(2)1, (2)(1)1, (2)2, (1)(3), (3)(1), (4).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Maple
b:= proc(n, i, p) option remember; `if`(n=0, [p!, 0], `if`(i<1, 0, add((p-> [0, `if`(j=0, 0, p[1]*i)]+p)( b(n-i*j, i-1, p+j)/j!), j=0..n/i))) end: a:= n-> b(n$2, 0)[2]: seq(a(n), n=0..38);
-
Mathematica
b[n_, i_, p_] := b[n, i, p] = If[n == 0, {p!, 0}, If[i < 1, {0, 0}, Sum[Function[{0, If[j == 0, 0, #[[1]]*i]} + #][ b[n - i*j, i - 1, p + j]/j!], {j, 0, n/i}]]]; a[n_] := b[n, n, 0][[2]]; Table[a[n], {n, 0, 38}] (* Jean-François Alcover, Mar 11 2022, after Alois P. Heinz *)