A336517 T(n, k) = numerator([x^k] b(n, x)), where b(n, x) = 2^n*Sum_{k=0..n} binomial(n, k) * Bernoulli(k, 1/2) * x^(n-k). Triangle read by rows, for 0 <= k <= n.
1, 0, 2, -1, 0, 4, 0, -2, 0, 8, 7, 0, -8, 0, 16, 0, 14, 0, -80, 0, 32, -31, 0, 28, 0, -80, 0, 64, 0, -62, 0, 392, 0, -224, 0, 128, 127, 0, -496, 0, 1568, 0, -1792, 0, 256, 0, 762, 0, -992, 0, 9408, 0, -1536, 0, 512, -2555, 0, 1524, 0, -4960, 0, 6272, 0, -3840, 0, 1024
Offset: 0
Examples
Rational polynomials start, coefficients of [numerators | denominators]: [ [1], [ 1]] [[0, 2], [ 1, 1]] [[-1, 0, 4], [ 3, 1, 1]] [[0, -2, 0, 8], [ 1, 1, 1, 1]] [[7, 0, -8, 0, 16], [15, 1, 1, 1, 1]] [[0, 14, 0, -80, 0, 32], [ 1, 3, 1, 3, 1, 1]] [[-31, 0, 28, 0, -80, 0, 64], [21, 1, 1, 1, 1, 1, 1]] [[0, -62, 0, 392, 0, -224, 0, 128], [ 1, 3, 1, 3, 1, 1, 1, 1]] [[127, 0, -496, 0, 1568, 0, -1792, 0, 256], [15, 1, 3, 1, 3, 1, 3, 1, 1]] [[0, 762, 0, -992, 0, 9408, 0, -1536, 0, 512], [ 1, 5, 1, 1, 1, 5, 1, 1, 1, 1]]
Programs
-
Maple
Bcp := n -> 2^n*add(binomial(n,k)*bernoulli(k,1/2)*x^(n-k), k=0..n): polycoeff := p -> seq(numer(coeff(p, x, k)), k = 0..degree(p, x)): Trow := n -> polycoeff(Bcp(n)): seq(Trow(n), n=0..10);
Comments