cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A336454 a(n) = denominator(2^n*Sum_{k=0..n} binomial(n, k)*Bernoulli(k, 1/2)*x^(n-k)).

Original entry on oeis.org

1, 1, 3, 1, 15, 3, 21, 3, 15, 5, 33, 3, 1365, 105, 15, 3, 255, 15, 1995, 105, 1155, 165, 345, 15, 1365, 273, 21, 7, 435, 15, 7161, 231, 19635, 1785, 105, 3, 959595, 25935, 1365, 105, 47355, 1155, 49665, 1155, 2415, 2415, 4935, 105, 23205, 3315, 7293, 429, 8745
Offset: 0

Views

Author

Peter Luschny, Jul 24 2020

Keywords

Crossrefs

Cf. A336517/A285865 (coefficients of polynomials).

Programs

  • Maple
    Bcp := n -> 2^n*add(binomial(n, k)*bernoulli(k, 1/2)*x^(n-k), k=0..n):
    a := n -> denom(Bcp(n)): seq(a(n), n=0..52);

A335953 T(n, k) = numerator([x^k] b_n(x)), where b_n(x) = Sum_{k=0..n} binomial(n,k)*2^k* Bernoulli(k, 1/2)*x^(n-k). Triangle read by rows, for n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, -1, 0, 1, 0, -1, 0, 1, 7, 0, -2, 0, 1, 0, 7, 0, -10, 0, 1, -31, 0, 7, 0, -5, 0, 1, 0, -31, 0, 49, 0, -7, 0, 1, 127, 0, -124, 0, 98, 0, -28, 0, 1, 0, 381, 0, -124, 0, 294, 0, -12, 0, 1, -2555, 0, 381, 0, -310, 0, 98, 0, -15, 0, 1
Offset: 0

Views

Author

Peter Luschny, Jul 25 2020

Keywords

Examples

			[0]   1
[1]   0,   1
[2]  -1,   0,    1
[3]   0,  -1,    0,    1
[4]   7,   0,   -2,    0,  1
[5]   0,   7,    0,  -10,  0,   1
[6] -31,   0,    7,    0, -5,   0,   1
[7]   0, -31,    0,   49,  0,  -7,   0,   1
[8] 127,   0, -124,    0, 98,   0, -28,   0, 1
[9]   0, 381,    0, -124,  0, 294,   0, -12, 0, 1
		

Crossrefs

Cf. A285865 (denominators), A336454 (polynomial denominator), A336517, A001896, A001897.

Programs

  • Maple
    Bcn := n -> 2^n*bernoulli(n, 1/2):
    Bcp := n -> add(binomial(n, k)*Bcn(k)*x^(n-k), k=0..n):
    polycoeff := p -> seq(numer(coeff(p, x, k)), k = 0..degree(p, x)):
    Trow := n -> polycoeff(Bcp(n)): seq(print(Trow(n)), n=0..9);
Showing 1-2 of 2 results.