cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A336519 Primes in Pi (variant of A336520): a(n) is the smallest prime factor of A090897(n) that does not appear in earlier terms of a, or 1, if no such factor exists.

Original entry on oeis.org

3, 2, 53, 7, 58979, 161923, 2643383, 1746893, 6971, 5, 17, 1499, 11, 1555077581737, 297707, 13, 37, 126541, 2130276389911155737, 1429, 71971, 383, 61, 1559, 29, 193, 12073, 698543, 157, 20289606809, 23687, 1249, 59, 2393, 251, 101, 15827173, 82351, 661
Offset: 1

Views

Author

Peter Luschny, Aug 21 2020

Keywords

Comments

Inspired by a comment of Mario Cortés in A090897, who suggests that 1 might not appear in this sequence.

Examples

			[ 1] 3,          {3}                  -> 3;
[ 2] 14,         {2, 7}               -> 2;
[ 3] 159,        {3, 53}              -> 53;
[ 4] 2653,       {7, 379}             -> 7;
[ 5] 58979,      {58979}              -> 58979;
[ 6] 323846,     {2, 161923}          -> 161923;
[ 7] 2643383,    {2643383}            -> 2643383;
[ 8] 27950288,   {2, 1746893}         -> 1746893;
[ 9] 419716939,  {6971, 60209}        -> 6971;
[10] 9375105820, {2, 5, 1163, 403057} -> 5.
		

Crossrefs

Programs

  • Maple
    aList := proc(len) local p, R, spl; R := [];
    spl := L -> [seq([seq(L[i], i=1 + n*(n+1)/2..(n+1)*(n+2)/2)], n=0..len)]:
    ListTools:-Reverse(convert(floor(Pi*10^((len+1)*(len+2)/2)), base, 10)):
    map(`@`(parse,cat,op), spl(%)); map(NumberTheory:-PrimeFactors, %);
    for p in % do ListTools:-SelectFirst(p -> evalb(not p in R), p);
    R := [op(R), `if`(%=NULL, 1, %)] od end: aList(30);
  • Mathematica
    Block[{nn = 38, s}, s = RealDigits[Pi, 10, (# + 1) (# + 2)/2 &@ nn][[1]]; Nest[Function[{a, n}, Append[a, SelectFirst[FactorInteger[FromDigits@ s[[1 + n (n + 1)/2 ;; (n + 1) (n + 2)/2 ]]][[All, 1]], FreeQ[a, #] &] /. k_ /; MissingQ@ k -> 1]] @@ {#, Length@ #} &, {}, nn + 1]] (* Michael De Vlieger, Aug 21 2020 *)
  • SageMath
    def Select(item, Selected):
        return next((x for x in item if not (x in Selected)), 1)
    def PiPart(n):
        return floor(pi * 10^(n * (n + 1) // 2 - 1)) % 10^n
    def A336519List(len):
        prev = []
        for n in range(1, len + 1):
            p = prime_factors(PiPart(n))
            prev.append(Select(p, prev))
        return prev
    print(A336519List(39))
Showing 1-1 of 1 results.