cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A336563 Sum of proper divisors of n that are divisible by every prime that divides n.

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 6, 3, 0, 0, 6, 0, 0, 0, 14, 0, 6, 0, 10, 0, 0, 0, 18, 5, 0, 12, 14, 0, 0, 0, 30, 0, 0, 0, 36, 0, 0, 0, 30, 0, 0, 0, 22, 15, 0, 0, 42, 7, 10, 0, 26, 0, 24, 0, 42, 0, 0, 0, 30, 0, 0, 21, 62, 0, 0, 0, 34, 0, 0, 0, 96, 0, 0, 15, 38, 0, 0, 0, 70, 39, 0, 0, 42, 0, 0, 0, 66, 0, 30, 0, 46, 0, 0, 0, 90
Offset: 1

Views

Author

Antti Karttunen, Jul 27 2020

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - 1; a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n] - n; Array[a, 100] (* Amiram Eldar, May 06 2023 *)
  • PARI
    A007947(n) = factorback(factorint(n)[, 1]);
    A057723(n) = { my(r=A007947(n)); (r*sigma(n/r)); };
    A336563(n) = (A057723(n)-n);
    \\ Or just as:
    A336563(n) = { my(x=A007947(n),y = n/x); (x*(sigma(y)-y)); };

Formula

a(n) = A057723(n) - n.
a(n) = A007947(n) * A336567(n) = A007947(n) * A001065(A003557(n)).
a(n) = A336564(n) - A033879(n).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A065487 - 1 = 0.231291... . - Amiram Eldar, Dec 07 2023

A336566 a(n) = gcd(A336563(n), A336564(n)) = gcd(A057723(n)-n, n-A308135(n)).

Original entry on oeis.org

1, 1, 2, 1, 4, 0, 6, 1, 1, 2, 10, 2, 12, 4, 6, 1, 16, 3, 18, 2, 10, 8, 22, 6, 1, 10, 2, 14, 28, 12, 30, 1, 18, 14, 22, 1, 36, 16, 22, 10, 40, 12, 42, 2, 3, 20, 46, 14, 1, 1, 30, 2, 52, 12, 38, 2, 34, 26, 58, 6, 60, 28, 1, 1, 46, 12, 66, 2, 42, 4, 70, 3, 72, 34, 1, 2, 58, 12, 78, 2, 1, 38, 82, 14, 62, 40, 54, 2, 88
Offset: 1

Views

Author

Antti Karttunen, Jul 27 2020

Keywords

Crossrefs

Differs from A326144 at the positions given by A336555, for the first time at n=45, where a(45) = 3, while A326144(45) = 6.

Programs

Formula

a(n) = gcd(A336563(n), A336564(n)) = gcd(A057723(n)-n, n-A308135(n));

A336564 a(n) = n - A308135(n), where A308135(n) is the sum of non-coreful divisors of n.

Original entry on oeis.org

1, 1, 2, 3, 4, 0, 6, 7, 8, 2, 10, 2, 12, 4, 6, 15, 16, 3, 18, 8, 10, 8, 22, 6, 24, 10, 26, 14, 28, -12, 30, 31, 18, 14, 22, 17, 36, 16, 22, 20, 40, -12, 42, 26, 27, 20, 46, 14, 48, 17, 30, 32, 52, 12, 38, 34, 34, 26, 58, -18, 60, 28, 43, 63, 46, -12, 66, 44, 42, -4, 70, 45, 72, 34, 41, 50, 58, -12, 78, 44, 80, 38, 82, -14, 62
Offset: 1

Views

Author

Antti Karttunen, Jul 27 2020

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1); fc[p_, e_] := f[p, e] - 1; a[1] = 1; a[n_] := n - Times @@ f @@@ (fct = FactorInteger[n]) + Times @@ fc @@@ fct; Array[a, 100] (* Amiram Eldar, Dec 08 2023 *)
  • PARI
    A007947(n) = factorback(factorint(n)[, 1]);
    A057723(n) = { my(r=A007947(n)); (r*sigma(n/r)); };
    A308135(n) = (sigma(n)-A057723(n));
    A336564(n) = (n - A308135(n));

Formula

a(n) = n - A308135(n) = n - (sigma(n) - A057723(n)).
a(n) = A336563(n) + A033879(n). [Corrected by Georg Fischer, Dec 13 2022]
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A065487 - A013661 + 1 = 0.586357... . - Amiram Eldar, Dec 08 2023

A336647 a(n) = n - A336566(n).

Original entry on oeis.org

0, 1, 1, 3, 1, 6, 1, 7, 8, 8, 1, 10, 1, 10, 9, 15, 1, 15, 1, 18, 11, 14, 1, 18, 24, 16, 25, 14, 1, 18, 1, 31, 15, 20, 13, 35, 1, 22, 17, 30, 1, 30, 1, 42, 42, 26, 1, 34, 48, 49, 21, 50, 1, 42, 17, 54, 23, 32, 1, 54, 1, 34, 62, 63, 19, 54, 1, 66, 27, 66, 1, 69, 1, 40, 74, 74, 19, 66, 1, 78, 80, 44, 1, 70, 23, 46, 33, 86
Offset: 1

Views

Author

Antti Karttunen, Jul 30 2020

Keywords

Comments

Some terms, for example a(600) and a(6552), are negative. - Georg Fischer, Jul 31 2020

Crossrefs

Cf. A336555 (positions where differs from A336646).
Cf. A336565 (positions where a(n) = 2*n - A057723(n) = n - A336563(n)).
Cf. also A336645.

Programs

Formula

a(n) = n - A336566(n).
Showing 1-4 of 4 results.