cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A336516 Sum of parts, counted without multiplicity, in all compositions of n.

Original entry on oeis.org

0, 1, 3, 10, 24, 59, 136, 309, 682, 1493, 3223, 6904, 14675, 31013, 65202, 136512, 284748, 592082, 1227709, 2539516, 5241640, 10798133, 22206568, 45597489, 93495667, 191464970, 391636718, 800233551, 1633530732, 3331568080, 6789078236, 13824212219, 28129459098
Offset: 0

Views

Author

Alois P. Heinz, Jul 24 2020

Keywords

Examples

			a(4) = 1 + 1 + 2 + 1 + 2 + 1 + 2 + 2 + 1 + 3 + 3 + 1 + 4 = 24: (1)111, (1)1(2), (1)(2)1, (2)(1)1, (2)2, (1)(3), (3)(1), (4).
		

Crossrefs

Cf. A001787 (all parts), A014153 (the same for partitions), A336511, A336512, A336579, A336875.

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(n=0, [p!, 0],
          `if`(i<1, 0, add((p-> [0, `if`(j=0, 0, p[1]*i)]+p)(
             b(n-i*j, i-1, p+j)/j!), j=0..n/i)))
        end:
    a:= n-> b(n$2, 0)[2]:
    seq(a(n), n=0..38);
  • Mathematica
    b[n_, i_, p_] := b[n, i, p] = If[n == 0, {p!, 0},
         If[i < 1, {0, 0}, Sum[Function[{0, If[j == 0, 0, #[[1]]*i]} + #][
           b[n - i*j, i - 1, p + j]/j!], {j, 0, n/i}]]];
    a[n_] := b[n, n, 0][[2]];
    Table[a[n], {n, 0, 38}] (* Jean-François Alcover, Mar 11 2022, after Alois P. Heinz *)

A309561 Total sum of prime parts in all compositions of n.

Original entry on oeis.org

0, 0, 2, 7, 16, 44, 102, 244, 554, 1247, 2772, 6111, 13334, 28916, 62302, 133557, 285020, 605869, 1283362, 2710008, 5706546, 11986171, 25118500, 52529339, 109643310, 228455907, 475250388, 987177924, 2047710144, 4242128909, 8777675002, 18142184432, 37458037658
Offset: 0

Views

Author

Alois P. Heinz, Aug 07 2019

Keywords

Examples

			a(4) = 16: 1111, (2)11, 1(2)1, 11(2), (2)(2), (3)1, 1(3), 4.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; add(a(n-j) +j*
          `if`(isprime(j), ceil(2^(n-j-1)), 0), j=1..n)
        end:
    seq(a(n), n=0..33);
  • Mathematica
    a[n_] := a[n] = Sum[a[n-j]+j*If[PrimeQ[j], Ceiling[2^(n-j-1)], 0], {j, 1, n}];
    a /@ Range[0, 33] (* Jean-François Alcover, Jan 03 2021, after Alois P. Heinz *)

Formula

G.f.: Sum_{k>=1} prime(k)*x^prime(k)*(1-x)^2/(1-2*x)^2.
a(n) ~ c * 2^n * n, where c = 0.27326606442562679135064648817419092073886899135... - Vaclav Kotesovec, Aug 18 2019

A336632 Number of prime parts, counted without multiplicity, in all compositions of n.

Original entry on oeis.org

0, 0, 1, 3, 6, 15, 33, 74, 160, 344, 731, 1544, 3237, 6753, 14022, 29009, 59819, 123010, 252341, 516560, 1055476, 2153115, 4385889, 8922556, 18131000, 36805009, 74643126, 151255021, 306267833, 619719217, 1253191291, 2532750315, 5116124712, 10329574480
Offset: 0

Views

Author

Alois P. Heinz, Jul 28 2020

Keywords

Examples

			a(4) = 0 + 1 + 1 + 1 + 1 + 1 + 1 + 0 = 6: 1111, 11(2), 1(2)1, (2)11, (2)2, 1(3), (3)1, 4.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(n=0, [p!, 0],
          `if`(i<1, 0, add((h-> [0, `if`(j>0 and isprime(i),
           h[1], 0)]+h)(b(n-i*j, i-1, p+j)/j!), j=0..n/i)))
        end:
    a:= n-> b(n$2, 0)[2]:
    seq(a(n), n=0..38);
  • Mathematica
    b[n_, i_, p_] := b[n, i, p] = If[n == 0, {p!, 0},
         If[i < 1, 0, Sum[Function[h, {0, If[j > 0 && PrimeQ[i],
         h[[1]], 0]} + h][b[n - i*j, i - 1, p + j]/j!], {j, 0, n/i}]]];
    a[n_] := b[n, n, 0][[2]];
    Table[a[n], {n, 0, 38}] (* Jean-François Alcover, May 30 2022, after Alois P. Heinz *)
Showing 1-3 of 3 results.