A336612 Numbers m such that sigma(tau(m)) divides m, where tau(m) is the number of divisors function (A000005) and sigma(m) is the sum of divisors function (A000203).
1, 3, 4, 12, 14, 21, 30, 35, 64, 77, 84, 91, 105, 119, 133, 135, 140, 144, 161, 162, 165, 192, 195, 203, 217, 224, 255, 259, 285, 287, 301, 308, 329, 336, 343, 345, 360, 364, 371, 375, 392, 413, 420, 427, 435, 465, 468, 469, 476, 480, 497, 511, 532, 540, 553, 555, 576
Offset: 1
Keywords
Examples
35 = 7 * 5, tau(35) = 4, sigma(tau(35)) = sigma(4) = 4 + 2 + 1 = 7 and 35/7 = 5 hence 35 is a term.
Programs
-
Maple
with(numtheory) filter:= m -> m/sigma(tau(m)) = floor(m/sigma(tau(m))) : select(filter, [$1..600]);
-
Mathematica
Select[Range[600], Divisible[#, DivisorSigma[1, DivisorSigma[0, #]]] &] (* Amiram Eldar, Jul 27 2020 *)
-
PARI
isok(m) = !(m % sigma(numdiv(m))); \\ Michel Marcus, Jul 29 2020
Comments