A336613 Numbers m such that tau(sigma(m)) divides m, where tau(m) is the number of divisors function (A000005) and sigma(m) is the sum of divisors function (A000203).
1, 2, 3, 4, 6, 8, 12, 16, 24, 36, 48, 64, 72, 80, 81, 84, 100, 112, 120, 128, 140, 144, 156, 160, 162, 168, 192, 198, 200, 208, 210, 216, 240, 256, 270, 288, 300, 320, 324, 336, 357, 360, 368, 384, 390, 420, 432, 448, 464, 468, 480, 512, 560, 576, 592, 600, 624, 630
Offset: 1
Keywords
Examples
48 = 2^4 * 3, so, sigma(48) = sigma(2^4) * sigma(3) = (2^5 - 1) * (1+3) = 31 * 4 = 124; then, tau(2^2 * 31) = tau(4) * tau(31) = 3 * 2 = 6, and 48/6 = 8 = 2^3, hence 48 is a term.
Crossrefs
Programs
-
Maple
with(numtheory) filter:= m -> m/tau(sigma(m)) = floor(m/tau(sigma(m))) : select(filter, [$1..650]);
-
Mathematica
Select[Range[630], Divisible[#, DivisorSigma[0, DivisorSigma[1, #]]] &] (* Amiram Eldar, Jul 30 2020 *)
-
PARI
isok(m) = !(m % numdiv(sigma(m))); \\ Michel Marcus, Jul 30 2020
Comments