A336615 Numbers of the form p * m^2, where p is prime and m > 0 is not divisible by p.
2, 3, 5, 7, 11, 12, 13, 17, 18, 19, 20, 23, 28, 29, 31, 37, 41, 43, 44, 45, 47, 48, 50, 52, 53, 59, 61, 63, 67, 68, 71, 73, 75, 76, 79, 80, 83, 89, 92, 97, 98, 99, 101, 103, 107, 109, 112, 113, 116, 117, 124, 127, 131, 137, 139, 147, 148, 149, 151, 153, 157, 162
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Eckford Cohen, Arithmetical notes, IX. On the set of integers representable as a product of a prime and square, Acta Arithmetica, Vol. 7 (1962), pp. 417-420.
Crossrefs
Programs
-
Mathematica
Select[Range[2, 200], Select[FactorInteger[#][[;;, 2]], OddQ] == {1} &]
-
Python
from math import isqrt from sympy import primepi, primefactors def A336615(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x-sum(primepi(m:=x//y**2)-sum(1 for p in primefactors(y) if p<=m) for y in range(1,isqrt(x)+1)) return bisection(f,n,n) # Chai Wah Wu, Jan 30 2025
Formula
The number of terms not exceeding x is (Pi^2/6) * x/log(x) + O(x/(log(x))^2) (Cohen, 1962).
Comments