A336616 Maximum divisor of n! with distinct prime multiplicities.
1, 1, 2, 3, 24, 40, 720, 1008, 8064, 72576, 3628800, 5702400, 68428800, 80870400, 317011968, 118879488000, 1902071808000, 2487324672000, 44771844096000, 50039119872000, 1000782397440000, 21016430346240000, 5085976143790080000, 6156707963535360000
Offset: 0
Keywords
Examples
The sequence of terms together with their prime signatures begins: 1: () 1: () 2: (1) 3: (1) 24: (3,1) 40: (3,1) 720: (4,2,1) 1008: (4,2,1) 8064: (7,2,1) 72576: (7,4,1) 3628800: (8,4,2,1) 5702400: (8,4,2,1) 68428800: (10,5,2,1) 80870400: (10,5,2,1) 317011968: (11,5,2,1) 118879488000: (11,6,3,2,1)
Links
- David A. Corneth, Table of n, a(n) for n = 0..589
- Gus Wiseman, Sequences counting and encoding certain classes of multisets
Crossrefs
A336414 counts these divisors.
A336617 is the quotient n!/a(n).
A336618 is the version for equal prime multiplicities.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
A327526 gives the maximum divisor of n with equal prime multiplicities.
A336415 counts divisors of n! with equal prime multiplicities.
Programs
-
Mathematica
Table[Max@@Select[Divisors[n!],UnsameQ@@Last/@If[#==1,{},FactorInteger[#]]&],{n,0,15}]
-
PARI
a(n) = { if(n < 2, return(1)); my(pr = primes(primepi(n)), res = pr[#pr]); for(i = 1, #pr, pr[i] = [pr[i], val(n, pr[i])] ); forstep(i = #pr, 2, -1, if(pr[i][2] < pr[i-1][2], res*=pr[i-1][1]^pr[i-1][2] ) ); res } val(n, p) = my(r=0); while(n, r+=n\=p); r \\ David A. Corneth, Aug 25 2020
Formula
a(n) = A327498(n!).
Comments