cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A336635 Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(BesselI(0,2*sqrt(x))^2 - 1).

Original entry on oeis.org

1, 2, 14, 176, 3470, 96792, 3590048, 169686792, 9903471502, 696692504552, 57958925154584, 5614276497440712, 625153195794408608, 79159558899671117896, 11293672011942106846808, 1801015209162807119535216, 318805481931592799427378062
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 28 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 16; CoefficientList[Series[Exp[BesselI[0, 2 Sqrt[x]]^2 - 1], {x, 0, nmax}], x] Range[0, nmax]!^2
    a[0] = 1; a[n_] := a[n] = (1/n) Sum[Binomial[n, k]^2 Binomial[2 k, k] k a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 16}]

Formula

a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} binomial(n,k)^2 * binomial(2*k,k) * k * a(n-k).

A336636 Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(BesselI(0,2*sqrt(x))^3 - 1).

Original entry on oeis.org

1, 3, 33, 660, 20817, 935388, 56149098, 4311694467, 410200118577, 47174279349540, 6431874002292978, 1023398757621960327, 187566773426941146498, 39164789611542644630415, 9229712819952662426436507, 2435069724188535096598261305
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 28 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 15; CoefficientList[Series[Exp[BesselI[0, 2 Sqrt[x]]^3 - 1], {x, 0, nmax}], x] Range[0, nmax]!^2
    a[0] = 1; a[n_] := a[n] = (1/n) Sum[Binomial[n, k]^2 HypergeometricPFQ[{1/2, -k, -k}, {1, 1}, 4] k a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 15}]

Formula

a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} binomial(n,k)^2 * A002893(k) * k * a(n-k).
Showing 1-2 of 2 results.