cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336641 Numbers k such that A007913(k) divides sigma(k) and A008833(k)-1 either divides A326127(k) (= sigma(k)-core(k)-k), or both are zero.

Original entry on oeis.org

6, 24, 28, 96, 120, 150, 294, 384, 496, 1014, 1536, 3276, 3750, 3780, 6144, 8128, 14406, 20328, 24576, 32760, 93750, 98304, 171366, 306180, 393216, 705894, 1241460, 1572864, 2343750, 6291456, 16380000, 24800580, 25165824, 28960854, 30387840, 33550336, 34588806, 58593750, 100663296, 165143160, 332226048, 402653184
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2020

Keywords

Comments

Numbers k such that A326128(k) = A326129(k) form a subsequence of this sequence. So far it is not known whether it contains any other terms apart from those of A000396. See comments in A326129.
Sequence is infinite because all numbers of the form 6*4^n (A002023) are present.
Question: Are there any odd terms?

Crossrefs

Cf. A000396, A002023 (subsequences).
Cf. also A336550 for a similar construction.

Programs

  • PARI
    isA336641(n) = { my(c=core(n), s=sigma(n), u=((n/c)-1)); (!(s%c) && (gcd(u,(s-c-n))==u)); };