A336644 a(n) = (n-rad(n)) / core(n), where rad(n) and core(n) give the squarefree kernel and squarefree part of n, respectively.
0, 0, 0, 2, 0, 0, 0, 3, 6, 0, 0, 2, 0, 0, 0, 14, 0, 6, 0, 2, 0, 0, 0, 3, 20, 0, 8, 2, 0, 0, 0, 15, 0, 0, 0, 30, 0, 0, 0, 3, 0, 0, 0, 2, 6, 0, 0, 14, 42, 20, 0, 2, 0, 8, 0, 3, 0, 0, 0, 2, 0, 0, 6, 62, 0, 0, 0, 2, 0, 0, 0, 33, 0, 0, 20, 2, 0, 0, 0, 14, 78, 0, 0, 2, 0, 0, 0, 3, 0, 6, 0, 2, 0, 0, 0, 15, 0, 42, 6, 90, 0, 0, 0, 3, 0
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
- Antti Karttunen, Data supplement: n, a(n) computed for n = 1..65537
Programs
-
PARI
A336644(n) = ((n-factorback(factorint(n)[, 1])) / core(n));
-
Python
from math import prod from sympy.ntheory.factor_ import primefactors, core def A336644(n): return (n-prod(primefactors(n)))//core(n) # Chai Wah Wu, Dec 30 2021