A336675 Number of paths of length n starting at initial node of the path graph P_10.
1, 1, 2, 3, 6, 10, 20, 35, 70, 126, 251, 460, 911, 1690, 3327, 6225, 12190, 22950, 44744, 84626, 164407, 312019, 604487, 1150208, 2223504, 4239225, 8181175, 15621426, 30108147, 57556155, 110820165, 212037241, 407946421, 781074572, 1501844193, 2877011660, 5529362694
Offset: 0
Links
- Johann Cigler, Some remarks and conjectures related to lattice paths in strips along the x-axis, arXiv:1501.04750 [math.CO], 2015-2016.
- Nachum Dershowitz, Between Broadway and the Hudson: A Bijection of Corridor Paths, arXiv:2006.06516 [math.CO], 2020.
- Index entries for linear recurrences with constant coefficients, signature (1,4,-3,-3,1).
Crossrefs
Programs
-
Maple
X := j -> (-1)^(j/11) - (-1)^(1-j/11): a := k -> add((2 + X(j))*X(j)^k, j in [1, 3, 5, 7, 9])/11: seq(simplify(a(n)), n=0..30); # Peter Luschny, Sep 17 2020
-
Mathematica
a[n_,m_]:=2^(n+1)/(m+1) Module[{x=(Pi r)/(m+1)},Sum[Cos[x]^n (1+Cos[x]),{r,1,m,2}]] Table[a[n,10],{n,0,40}]//Round (* Herbert Kociemba, Sep 14 2020 *)
-
PARI
my(x='x+O('x^44)); Vec((1 - 3*x^2 + x^4)/(1 - x - 4*x^2 + 3*x^3 + 3*x^4 - x^5)) \\ Joerg Arndt, Jul 31 2020
Formula
From Stefano Spezia, Jul 30 2020: (Start)
G.f.: (1 - 3*x^2 + x^4)/(1 - x - 4*x^2 + 3*x^3 + 3*x^4 - x^5).
a(n) = a(n-1) + 4*a(n-2) - 3*a(n-3) - 3*a(n-4) + a(n-5) for n > 4. (End)
a(n) = (2^n/11)*Sum_{r=1..10} (1-(-1)^r)*cos(Pi*r/11)^n*(1+cos(Pi*r/11)). - Herbert Kociemba, Sep 14 2020
Comments