A336678 Number of paths of length n starting at initial node of the path graph P_11.
1, 1, 2, 3, 6, 10, 20, 35, 70, 126, 252, 461, 922, 1702, 3404, 6315, 12630, 23494, 46988, 87533, 175066, 326382, 652764, 1217483, 2434966, 4542526, 9085052, 16950573, 33901146, 63255670, 126511340, 236063915, 472127830, 880983606, 1761967212, 3287837741
Offset: 0
Links
- Johann Cigler, Some remarks and conjectures related to lattice paths in strips along the x-axis, arXiv:1501.04750 [math.CO], 2015-2016.
- Nachum Dershowitz, Between Broadway and the Hudson: A Bijection of Corridor Paths, arXiv:2006.06516 [math.CO], 2020.
- Index entries for linear recurrences with constant coefficients, signature (0,6,0,-9,0,2).
Crossrefs
Programs
-
Maple
X := j -> (-1)^(j/12) - (-1)^(1-j/12): a := k -> add((2 + X(j))*X(j)^k, j in [1, 3, 5, 7, 9, 11])/12: seq(simplify(a(n)), n=0..30); # Peter Luschny, Sep 17 2020
-
Mathematica
LinearRecurrence[{0, 6, 0, -9, 0, 2}, {1, 1, 2, 3, 6, 10}, 40] (* Harvey P. Dale, Sep 08 2020 *) a[n_,m_]:=2^(n+1)/(m+1) Module[{x=(Pi r)/(m+1)},Sum[Cos[x]^n (1+Cos[x]),{r,1,m,2}]] Table[a[n,11], {n,0,40}]//Round (* Herbert Kociemba, Sep 14 2020 *)
-
PARI
my(x='x+O('x^44)); Vec(-(x^5+3*x^4-3*x^3-4*x^2+x+1)/((2*x^2-1)*(x^4-4*x^2+1))) \\ Joerg Arndt, Jul 31 2020
Formula
G.f.: -(x^5+3*x^4-3*x^3-4*x^2+x+1)/((2*x^2-1)*(x^4-4*x^2+1)).
a(n) = (2^n/12)*Sum_{r=1..11} (1-(-1)^r)*cos(Pi*r/12)^n*(1+cos(Pi*r/12)). - Herbert Kociemba, Sep 14 2020
Comments