A336685 Sum of 2^k for residue k in among Lucas numbers mod n.
1, 3, 7, 15, 30, 63, 127, 190, 511, 990, 1183, 3582, 8190, 16383, 18590, 47806, 131070, 247967, 298911, 854686, 1453502, 2423967, 8362495, 10366142, 31738014, 67100670, 134217727, 262073758, 302254239, 609175710, 1779923167, 3133061822, 4962151582, 16855148990
Offset: 1
Examples
a(1) = 1 by convention. a(2) = 3 = 2^0 + 2^1, since the Lucas sequence contains both even and odd numbers. a(5) = 30 = 2^1 + 2^2 + 2^3 + 2^4, since the Lucas numbers mod 5 is {2,1,3,4,2,1} repeated, and we are missing 0, leaving the exponents of 2 as shown. Binary equivalents of first terms: n a(n) a(n) in binary -------------------------- 1 1 1 2 3 11 3 7 111 4 15 1111 5 30 11110 6 63 111111 7 127 1111111 8 190 10111110 9 511 111111111 10 990 1111011110 11 1183 10010011111 12 3582 110111111110 13 8190 1111111111110 14 16383 11111111111111 15 18590 100100010011110 16 47806 1011101010111110 ...
Programs
-
Mathematica
Total /@ {Most@ #, #} &[2^Range[0, 1]]~Join~Array[Block[{w = {2, 1}}, Do[If[SequenceCount[w, {2, 1}] == 1, AppendTo[w, Mod[Total@ w[[-2 ;; -1]], #]], Break[]], {i, 2, Infinity}]; Total[2^Union@ w]] &, 32, 3]
Comments