cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336689 Composite numbers k such that the decimal expansion of ((1/2^((k-1)/2))+1)/k or ((1/2^((k-1)/2))-1)/k is finite.

Original entry on oeis.org

15, 25, 75, 125, 175, 325, 341, 375, 425, 561, 625, 645, 1105, 1729, 1875, 1905, 2047, 2465, 3125, 3277, 4033, 4375, 4681, 5461, 6025, 6601, 8125, 8321, 8481, 8625, 9375, 10261, 10585, 10625, 12025, 12801, 15625, 15709, 15841, 16705, 16725, 18705, 25761, 29341
Offset: 1

Views

Author

Davide Rotondo, Jul 31 2020

Keywords

Comments

If (1/2^((k-1)/2))+-1 divided by k results in a finite decimal number, k is prime or pseudoprime.
Euler pseudoprimes: A006970 are a subsequence.
If k is a power of 5, both +1 and -1 result in a finite decimal number.
A composite integer is part of this list, if and only if
(((n-1)!-1)*(1/(2^((n-1)/2)))+1)/n or (((n-1)!-1)*(1/(2^((n-1)/2)))-1)/n results in a finite decimal number.

Examples

			15 is a term because ((1/(2^7))+1)/15 = 0.0671875.
9 is not a term because ((1/(2^4))+-1)/9 = 0.11805555... and -0.10416666... .
		

Crossrefs

Cf. A006970 (Euler pseudoprimes, a subsequence), A003592, A334834.

Programs

  • Mathematica
    A003592Q[n_] := n/2^IntegerExponent[n, 2]/5^IntegerExponent[n, 5] == 1; seqQ[n_] := CompositeQ[n] && (A003592Q[Denominator[((1/2^((n-1)/2)) + 1)/n]] || A003592Q[ Denominator[((1/2^((n-1)/2)) - 1)/n]]); Select[Range[1, 30000, 2], seqQ] (* Amiram Eldar, Jul 31 2020 *)

Extensions

More terms from Amiram Eldar, Jul 31 2020