A336689 Composite numbers k such that the decimal expansion of ((1/2^((k-1)/2))+1)/k or ((1/2^((k-1)/2))-1)/k is finite.
15, 25, 75, 125, 175, 325, 341, 375, 425, 561, 625, 645, 1105, 1729, 1875, 1905, 2047, 2465, 3125, 3277, 4033, 4375, 4681, 5461, 6025, 6601, 8125, 8321, 8481, 8625, 9375, 10261, 10585, 10625, 12025, 12801, 15625, 15709, 15841, 16705, 16725, 18705, 25761, 29341
Offset: 1
Examples
15 is a term because ((1/(2^7))+1)/15 = 0.0671875. 9 is not a term because ((1/(2^4))+-1)/9 = 0.11805555... and -0.10416666... .
Programs
-
Mathematica
A003592Q[n_] := n/2^IntegerExponent[n, 2]/5^IntegerExponent[n, 5] == 1; seqQ[n_] := CompositeQ[n] && (A003592Q[Denominator[((1/2^((n-1)/2)) + 1)/n]] || A003592Q[ Denominator[((1/2^((n-1)/2)) - 1)/n]]); Select[Range[1, 30000, 2], seqQ] (* Amiram Eldar, Jul 31 2020 *)
Extensions
More terms from Amiram Eldar, Jul 31 2020
Comments