cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A366894 a(n) = A336699(A163511(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 7, 1, 1, 1, 3, 7, 1, 1, 1, 1, 1, 1, 61, 3, 5, 7, 1, 1, 29, 1, 5, 1, 1, 1, 1, 1, 1, 1, 23, 61, 391, 3, 5, 5, 13, 7, 101, 1, 43, 1, 29, 29, 67, 1, 1, 5, 1, 1, 1, 1, 1, 1, 7, 1, 5, 1, 1, 1, 1, 1, 547, 23, 977, 61, 391, 391, 1401, 3, 127, 5, 19, 5, 13, 13, 23, 7, 39, 101, 221, 1, 43, 43, 67, 1, 371, 29, 25, 29
Offset: 0

Views

Author

Antti Karttunen, Jan 03 2024

Keywords

Crossrefs

Cf. A000265, A000593, A163511, A324186, A336699, A351565, A366895 (rgs-transform).

Programs

Formula

a(n) = A351565(A324186(n)).

A336698 a(n) = A000265(1+A000265(sigma(n))), where A000265(k) gives the odd part of k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 7, 5, 1, 1, 1, 1, 1, 1, 5, 5, 3, 11, 1, 5, 1, 1, 1, 11, 3, 1, 1, 5, 1, 1, 1, 7, 1, 23, 5, 1, 1, 23, 11, 1, 3, 11, 5, 5, 1, 1, 29, 47, 5, 25, 7, 1, 5, 1, 3, 23, 1, 11, 1, 1, 7, 1, 11, 5, 9, 1, 1, 5, 5, 49, 19, 29, 1, 9, 1, 11, 3, 47, 61, 1, 11, 1, 7, 17, 1, 23, 23, 59, 1, 11, 1, 5, 1, 1, 25
Offset: 1

Views

Author

Antti Karttunen, Aug 02 2020

Keywords

Crossrefs

Programs

Formula

a(n) = A000265(1+A000265(A000203(n))) = A000265(1+A161942(n)).
a(A000265(n)) = A336699(n).

A336701 Numbers k for which A000265(1+A000265(sigma(k))) is equal to A000265(1+k).

Original entry on oeis.org

1, 3, 7, 15, 31, 127, 1023, 8191, 34335, 57855, 131071, 524287, 2147483647
Offset: 1

Views

Author

Antti Karttunen, Aug 02 2020

Keywords

Comments

Numbers k such that A336698(k) [= A000265(1+A161942(k))] is equal to A000265(1+k).
Numbers k such that A337194(k) = 2^e * A000265(1+k), for some e >= 1, where that e = A337195(k).
Any odd perfect number would trivially satisfy this condition.
Also, all hypothetical quasiperfect numbers, numbers k that satisfy sigma(k) = 2k+1, would be members.
Question: Is A066175 a subsequence of this sequence?
From Antti Karttunen, Aug 23 2020: (Start)
Numbers k such that (1+k) = 2^e * A336698(k), for some e >= 0.
Thus numbers k such that for some e >= 0, (1+k) = 2^(e-A337195(k)) * A337194(k), or equally, that A337194(k) = 2^(A337195(k)-e) * (1+k).
Conjecture: There are no even terms. This is equivalent to claim that there are no k such that A336698(k) = 1+k: If we assume that k is even, then in above equations we set e=0, and the requirement will then become that A337194(k) = 2^A337195(k)*(1+k), thus 1+k = A336698(k) = A000265(1+A000265(sigma(k))).
(End)

Crossrefs

Subsequence of A336700.
Cf. A000668 (a subsequence).
See also comments in A326042, A332223.

Programs

  • Mathematica
    Block[{f}, f[n_] := n/2^IntegerExponent[n, 2]; Select[Range[2^20], f[1 + f[DivisorSigma[1, #]]] == f[1 + #] &] ] (* Michael De Vlieger, Aug 22 2020 *)
  • PARI
    A000265(n)  = (n>>valuation(n,2));
    isA336701(n) = (A000265(1+A000265(sigma(n))) == A000265(1+n));

A336844 a(n) = A336698(A003961(n)).

Original entry on oeis.org

1, 1, 1, 7, 1, 1, 1, 3, 1, 1, 1, 5, 5, 1, 1, 61, 3, 1, 1, 7, 5, 1, 1, 1, 29, 5, 5, 5, 1, 1, 5, 23, 11, 3, 1, 101, 11, 1, 7, 3, 3, 5, 1, 23, 1, 1, 7, 91, 67, 29, 1, 59, 1, 5, 1, 1, 5, 1, 1, 5, 9, 5, 47, 547, 5, 11, 5, 33, 23, 1, 19, 39, 3, 11, 43, 5, 11, 7, 11, 61, 391, 3, 23, 59, 3, 1, 1, 9, 25, 1, 7, 49, 29, 7, 1, 137
Offset: 1

Views

Author

Antti Karttunen, Aug 06 2020

Keywords

Crossrefs

Programs

Formula

a(n) = A000265(1+A000265(A003973(n))).
a(n) = A336698(A003961(n)) = A336699(A003961(n)).

A351565 Odd part of Kimberling's paraphrases: a(n) = A000265(A003602(n)).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 1, 5, 3, 3, 1, 7, 1, 1, 1, 9, 5, 5, 3, 11, 3, 3, 1, 13, 7, 7, 1, 15, 1, 1, 1, 17, 9, 9, 5, 19, 5, 5, 3, 21, 11, 11, 3, 23, 3, 3, 1, 25, 13, 13, 7, 27, 7, 7, 1, 29, 15, 15, 1, 31, 1, 1, 1, 33, 17, 17, 9, 35, 9, 9, 5, 37, 19, 19, 5, 39, 5, 5, 3, 41, 21, 21, 11, 43, 11, 11, 3, 45, 23, 23, 3, 47
Offset: 1

Views

Author

Antti Karttunen, Mar 27 2022

Keywords

Crossrefs

Cf. A000265, A003602, A023758 (gives the positions of 1's after its initial zero-term).
Cf. also A336698, A336699.

Programs

Formula

a(n) = A000265(A003602(n)) = A000265(1+A000265(n)).

A366895 Lexicographically earliest infinite sequence such that a(i) = a(j) => A366894(i) = A366894(j) for all i, j >= 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 4, 3, 5, 2, 1, 1, 6, 1, 5, 1, 1, 1, 1, 1, 1, 1, 7, 4, 8, 3, 5, 5, 9, 2, 10, 1, 11, 1, 6, 6, 12, 1, 1, 5, 1, 1, 1, 1, 1, 1, 2, 1, 5, 1, 1, 1, 1, 1, 13, 7, 14, 4, 8, 8, 15, 3, 16, 5, 17, 5, 9, 9, 7, 2, 18, 10, 19, 1, 11, 11, 12, 1, 20, 6, 21, 6, 12, 12, 7, 1, 22, 1, 5, 5
Offset: 0

Views

Author

Antti Karttunen, Jan 03 2024

Keywords

Comments

Restricted growth sequence transform of A366894.
For all i, j >= 0:
A366881(i) = A366881(j) => A366806(i) = A366806(j) => a(i) = a(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A000265(n) = (n>>valuation(n,2));
    A163511(n) = if(!n,1,my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));
    A336699(n) = A000265(1+A000265(sigma(A000265(n))));
    A366894(n) = A336699(A163511(n));
    v366895 = rgs_transform(vector(1+up_to,n,A366894(n-1)));
    A366895(n) = v366895[1+n];
Showing 1-6 of 6 results.