A336700 Numbers k such that the odd part of (1+k) divides (1 + odd part of sigma(k)).
1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 2431, 2943, 3775, 4095, 8191, 13311, 14335, 16383, 17407, 21951, 22527, 32767, 34335, 44031, 57855, 65535, 85375, 131071, 204799, 262143, 376831, 524287, 923647, 1048575, 1562623, 1632255, 2056191, 2097151, 2744319, 4194303, 6815743, 8388607, 8781823, 10059775, 16777215
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..77; all terms < 2^32
- Paolo Cattaneo, Sui numeri quasiperfetti, Bollettino dell’Unione Matematica Italiana, Serie 3, Vol.6(1951), n.1, p. 59-62.
- P. Hagis and G. L. Cohen, Some Results Concerning Quasiperfect Numbers, J. Austral. Math. Soc. Ser. A 33, 275-286, 1982.
- V. Siva Rama Prasad and C. Sunitha, On quasiperfect numbers, Notes on Number Theory and Discrete Mathematics, Vol. 23, 2017, No. 3, 73-78.
- Eric Weisstein's World of Mathematics, Quasiperfect Number
- Index entries for sequences where odd perfect numbers must occur, if they exist at all
- Index entries for sequences related to sigma(n)
Crossrefs
Programs
-
Mathematica
Block[{f}, f[n_] := n/2^IntegerExponent[n, 2]; Select[Range[2^20], Mod[f[1 + f[DivisorSigma[1, #]]], f[1 + #]] == 0 &] ] (* Michael De Vlieger, Aug 22 2020 *)
-
PARI
A000265(n) = (n>>valuation(n,2)); isA336700(n) = !((1+A000265(sigma(n)))%A000265(1+n));
Comments