A336703 Rectangular array read by antidiagonals. T(n,k) is the number of length k walks from {} to [n] in the digraph representation of the superset/subset relation on P([n]) the powerset of [n], n>=0, k>=0.
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 4, 4, 1, 0, 1, 8, 14, 8, 1, 0, 1, 16, 50, 46, 16, 1, 0, 1, 32, 178, 278, 146, 32, 1, 0, 1, 64, 634, 1666, 1454, 454, 64, 1, 0, 1, 128, 2258, 9998, 14230, 7358, 1394, 128, 1, 0, 1, 256, 8042, 59986, 139750, 115546, 36590, 4246, 256, 1, 0
Offset: 0
Examples
1, 1, 1, 1, 1, 1, 1, 1, 1,... 0, 1, 2, 4, 8, 16, 32, 64, 128,... 0, 1, 4, 14, 50, 178, 634, 2258, 8042,... 0, 1, 8, 46, 278, 1666, 9998, 59986, 359918,... 0, 1, 16, 146, 1454, 14230, 139750, 1371494, 13461638,...
Links
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 339.
Crossrefs
Cf. A027649 (column k=3, number of edges in the digraph).
Programs
-
Mathematica
(* gives first 7 rows and 11 columns in about 3 minutes *) Table[a = Subsets[Range[n]];f[list_] := Map[Apply[SubsetQ, #] &, list]; G = Map[f,Table[Table[{a[[i]], a[[j]]}, {i, 1, 2^n}], {j, 1, 2^n}]] // Boole; H = (G - IdentityMatrix[2^n]) + Transpose[(G - IdentityMatrix[2^n]) + IdentityMatrix[2^n]];b = Inverse[IdentityMatrix[2^n] - z H] // Simplify; MatrixForm[b]; nn = 10; CoefficientList[Series[b[[1, 2^n]], {z, 0, nn}], z], {n, 0,6}] // Grid
Comments