cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336703 Rectangular array read by antidiagonals. T(n,k) is the number of length k walks from {} to [n] in the digraph representation of the superset/subset relation on P([n]) the powerset of [n], n>=0, k>=0.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 4, 4, 1, 0, 1, 8, 14, 8, 1, 0, 1, 16, 50, 46, 16, 1, 0, 1, 32, 178, 278, 146, 32, 1, 0, 1, 64, 634, 1666, 1454, 454, 64, 1, 0, 1, 128, 2258, 9998, 14230, 7358, 1394, 128, 1, 0, 1, 256, 8042, 59986, 139750, 115546, 36590, 4246, 256, 1, 0
Offset: 0

Views

Author

Geoffrey Critzer, Jul 31 2020

Keywords

Comments

The superset/subset relation on P([n]) is defined as: for all A,B in P([n]), A ~ B iff A is a subset of B or B is a subset of A.

Examples

			1, 1, 1,  1,   1,    1,     1,      1,       1,...
0, 1, 2,  4,   8,    16,    32,     64,      128,...
0, 1, 4,  14,  50,   178,   634,    2258,    8042,...
0, 1, 8,  46,  278,  1666,  9998,   59986,   359918,...
0, 1, 16, 146, 1454, 14230, 139750, 1371494, 13461638,...
		

Crossrefs

Cf. A027649 (column k=3, number of edges in the digraph).

Programs

  • Mathematica
    (* gives first 7 rows and 11 columns in about 3 minutes *)
    Table[a = Subsets[Range[n]];f[list_] := Map[Apply[SubsetQ, #] &, list];
      G = Map[f,Table[Table[{a[[i]], a[[j]]}, {i, 1, 2^n}], {j, 1, 2^n}]] //
        Boole; H = (G - IdentityMatrix[2^n]) + Transpose[(G - IdentityMatrix[2^n]) + IdentityMatrix[2^n]];b = Inverse[IdentityMatrix[2^n] - z H] // Simplify; MatrixForm[b]; nn = 10; CoefficientList[Series[b[[1, 2^n]], {z, 0, nn}], z], {n, 0,6}] // Grid