A336715 Numbers m that divide the product phi(m) * tau(m), where tau is the number of divisors function (A000005) and phi is the Euler totient function (A000010).
1, 2, 8, 9, 12, 18, 32, 36, 72, 80, 96, 108, 128, 144, 243, 288, 324, 400, 448, 486, 512, 576, 625, 720, 768, 864, 972, 1152, 1200, 1250, 1344, 1620, 1944, 2000, 2025, 2048, 2304, 2500, 2560, 2592, 2916, 3136, 3600, 3888, 4032, 4050, 4608, 5000, 5103, 5625, 6144, 6561, 6912
Offset: 1
Keywords
Examples
For 80, phi(80) = 32, tau(80) = 10 and tau(80)*phi(80)/80 = 4, hence 80 is a term.
Links
- David A. Corneth, Table of n, a(n) for n = 1..12173 (terms <= 10^15)
Programs
-
Maple
with(numtheory): filter:= m-> irem(phi(m)*tau(m), m)=0: select(filter, [$1..7000])[];
-
Mathematica
Select[Range[7000], Divisible[DivisorSigma[0, #] * EulerPhi[#], #] &] (* Amiram Eldar, Aug 01 2020 *)
-
PARI
isok(m) = (eulerphi(m)*numdiv(m) % m) == 0; \\ Michel Marcus, Aug 02 2020
Comments