A336727
Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(0,k) = 1 and T(n,k) = (1/n) * Sum_{j=1..n} (-k)^(n-j) * binomial(n,j) * binomial(n,j-1) for n > 0.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, -1, -1, 1, 1, 1, -2, -1, 0, 1, 1, 1, -3, 1, 5, 2, 1, 1, 1, -4, 5, 10, -3, 0, 1, 1, 1, -5, 11, 9, -38, -21, -5, 1, 1, 1, -6, 19, -4, -103, 28, 51, 0, 1, 1, 1, -7, 29, -35, -174, 357, 289, 41, 14, 1, 1, 1, -8, 41, -90, -203, 1176, -131, -1262, -391, 0, 1
Offset: 0
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
1, 0, -1, -2, -3, -4, -5, ...
1, -1, -1, 1, 5, 11, 19, ...
1, 0, 5, 10, 9, -4, -35, ...
1, 2, -3, -38, -103, -174, -203, ...
1, 0, -21, 28, 357, 1176, 2575, ...
-
T[0, k_] := 1; T[n_, k_] := Sum[If[k == 0, Boole[n == j],(-k)^(n - j)] * Binomial[n, j] * Binomial[n , j - 1], {j, 1, n}] / n; Table[T[k, n- k], {n, 0, 11}, {k, 0, n}] //Flatten (* Amiram Eldar, Aug 02 2020 *)
-
{T(n, k) = if(n==0, 1, sum(j=1, n, (-k)^(n-j)*binomial(n, j)*binomial(n, j-1))/n)}
-
{T(n, k) = local(A=1+x*O(x^n)); for(i=0, n, A=1+x*A/(1+k*x*A)); polcoef(A, n)}
-
{T(n, k) = sum(j=0, n, (-k)^j*(k+1)^(n-j)*binomial(n, j)*binomial(n+j, n)/(j+1))}
A352687
Triangle read by rows, a Narayana related triangle whose rows are refinements of twice the Catalan numbers (for n >= 2).
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 4, 4, 1, 0, 1, 7, 12, 7, 1, 0, 1, 11, 30, 30, 11, 1, 0, 1, 16, 65, 100, 65, 16, 1, 0, 1, 22, 126, 280, 280, 126, 22, 1, 0, 1, 29, 224, 686, 980, 686, 224, 29, 1, 0, 1, 37, 372, 1512, 2940, 2940, 1512, 372, 37, 1
Offset: 0
Triangle starts:
[0] 1;
[1] 0, 1;
[2] 0, 1, 1;
[3] 0, 1, 2, 1;
[4] 0, 1, 4, 4, 1;
[5] 0, 1, 7, 12, 7, 1;
[6] 0, 1, 11, 30, 30, 11, 1;
[7] 0, 1, 16, 65, 100, 65, 16, 1;
[8] 0, 1, 22, 126, 280, 280, 126, 22, 1;
[9] 0, 1, 29, 224, 686, 980, 686, 224, 29, 1;
- Xi Chen, Arthur Li Bo Yang, James Jing Yu Zhao, Recurrences for Callan's Generalization of Narayana Polynomials, J. Syst. Sci. Complex (2021).
- Peter Luschny, Illustration of the polynomials.
- Robert A. Sulanke, The Narayana distribution, J. Statist. Plann. Inference, 2002, 101: 311-326, formula 2.
-
T := (n, k) -> if n = k then 1 elif k = 0 then 0 else
binomial(n, k)^2*(k*(2*k^2 + (n + 1)*(n - 2*k))) / (n^2*(n - 1)*(n - k + 1)) fi:
seq(seq(T(n, k), k = 0..n), n = 0..10);
# Alternative:
gf := 1 - x + (1 + y)*(1 - x*(y - 1) - sqrt((x*y + x - 1)^2 - 4*x^2*y))/2:
serx := expand(series(gf, x, 16)): coeffy := n -> coeff(serx, x, n):
seq(seq(coeff(coeffy(n), y, k), k = 0..n), n = 0..10);
# Using polynomial recurrence:
P := proc(n, x) option remember; if n < 3 then [1, x, x + x^2] [n + 1] else
((2*n - 3)*(x + 1)*P(n - 1, x) - (n - 3)*(x - 1)^2*P(n - 2, x)) / n fi end:
Trow := n -> seq(coeff(P(n, x), x, k), k = 0..n): seq(Trow(n), n = 0..10);
# Represented by generalized Narayana polynomials:
N := (n, k, x) -> add(((k+1)/(n-k))*binomial(n-k,j-1)*binomial(n-k,j+k)*x^(j+k), j=0..n-2*k): seq(print(ifelse(n=0, 1, expand(N(n,0,x) - N(n,1,x)))), n=0..7);
-
H[0, ] := 1; H[1, x] := x;
H[n_, x_] := x*(x + 1)*Hypergeometric2F1[1 - n, 2 - n, 2, x];
Hrow[n_] := CoefficientList[H[n, x], x]; Table[Hrow[n], {n, 0, 9}] // TableForm
-
from math import comb as binomial
def T(n, k):
if k == n: return 1
if k == 0: return 0
return ((binomial(n, k)**2 * (k * (2 * k**2 + (n + 1) * (n - 2 * k))))
// (n**2 * (n - 1) * (n - k + 1)))
def Trow(n): return [T(n, k) for k in range(n + 1)]
for n in range(10): print(Trow(n))
-
# The recursion with cache is (much) faster:
from functools import cache
@cache
def T_row(n):
if n < 3: return ([1], [0, 1], [0, 1, 1])[n]
A = T_row(n - 2) + [0, 0]
B = T_row(n - 1) + [1]
for k in range(n - 1, 1, -1):
B[k] = (((B[k] + B[k - 1]) * (2 * n - 3)
- (A[k] - 2 * A[k - 1] + A[k - 2]) * (n - 3)) // n)
return B
for n in range(10): print(T_row(n))
Showing 1-2 of 2 results.
Comments