cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336736 Number of factorizations of n whose distinct factors have disjoint prime signatures.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 11, 1, 1, 1, 2, 1, 1, 1, 5, 1, 1, 2, 2, 1, 1, 1, 4, 5, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Aug 06 2020

Keywords

Comments

A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization.

Examples

			The a(n) factorizations for n = 36, 360, 720, 192, 288:
  (36)     (360)    (720)     (192)      (288)
  (6*6)    (5*72)   (8*90)    (3*64)     (8*36)
  (2*2*9)  (8*45)   (9*80)    (4*48)     (9*32)
  (3*3*4)  (9*40)   (10*72)   (6*32)     (16*18)
           (10*36)  (16*45)   (12*16)    (2*144)
           (5*8*9)  (5*144)   (3*8*8)    (6*6*8)
                    (5*9*16)  (4*6*8)    (2*2*72)
                    (8*9*10)  (3*4*16)   (2*9*16)
                              (3*4*4*4)  (3*3*32)
                                         (2*2*8*9)
                                         (3*3*4*8)
                                         (2*2*2*36)
                                         (2*2*2*2*2*9)
		

Crossrefs

A001055 counts factorizations.
A118914 is sorted prime signature.
A124010 is prime signature.
A336737 counts factorizations with intersecting signatures.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    prisig[n_]:=If[n==1,{},Last/@FactorInteger[n]];
    Table[Length[Select[facs[n],stableQ[#,Intersection[prisig[#1],prisig[#2]]!={}&]&]],{n,100}]