A336736 Number of factorizations of n whose distinct factors have disjoint prime signatures.
1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 11, 1, 1, 1, 2, 1, 1, 1, 5, 1, 1, 2, 2, 1, 1, 1, 4, 5, 1, 1, 2, 1, 1, 1
Offset: 1
Keywords
Examples
The a(n) factorizations for n = 36, 360, 720, 192, 288: (36) (360) (720) (192) (288) (6*6) (5*72) (8*90) (3*64) (8*36) (2*2*9) (8*45) (9*80) (4*48) (9*32) (3*3*4) (9*40) (10*72) (6*32) (16*18) (10*36) (16*45) (12*16) (2*144) (5*8*9) (5*144) (3*8*8) (6*6*8) (5*9*16) (4*6*8) (2*2*72) (8*9*10) (3*4*16) (2*9*16) (3*4*4*4) (3*3*32) (2*2*8*9) (3*3*4*8) (2*2*2*36) (2*2*2*2*2*9)
Crossrefs
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; prisig[n_]:=If[n==1,{},Last/@FactorInteger[n]]; Table[Length[Select[facs[n],stableQ[#,Intersection[prisig[#1],prisig[#2]]!={}&]&]],{n,100}]
Comments